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Abstract

We analyze the coexistence of cash (fiat money) and privately-issued currencies (crypto-

currencies) in a dynamic model where all factors of production are paid in fiat money. This

introduces a cash-in-advance constraint that affects both consumption and investment, leading

to non-neutrality of money. Crypto-currencies add distortions through labor reallocation and

transaction fees. Using flexible utility specifications, we explore the impact of substitutability

between money and crypto-purchased goods. Our main result is that an increase in the money

supply raises inflation and shifts labor allocation, affecting growth dynamics. While broader

economic variables remain stable, real wages are highly sensitive to changes in consumer pref-

erences and crypto-fees, underscoring the impact of private digital currencies on the economy’s

long-term trajectory.

Keywords : Fiat money, crypto-currency and non-neutrality, cash-in-advance, growth theory.

1 Introduction

We study the coexistence of fiat money and crypto-currencies in a dynamic model where all pro-

duction factors are legally required to be compensated in fiat money, the legal tender. This legal

requirement for all transactions to be conducted in a government-backed currency is equivalent to

a comprehensive cash-in-advance (CIA) constraint, which mandates that money must cover both

consumption expenditures and investment in physical capital. The introduction of physical capital

investment and dynamic considerations allows us to capture the non-neutrality of both fiat money

and crypto-currencies, which does not occur in models where both media of exchange serve purely

transactional functions.

The CIA constraint also extends to exchanges of fiat money for crypto-currencies, which are

then used to purchase crypto-paid consumption goods. We model the representative consumer’s

preference for either form of payment through different mathematical specifications of the instan-

taneous utility function. Initially, the consumer derives utility by combining money-purchased
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and crypto-purchased goods through a Cobb-Douglas function. Later, we generalize our analysis

by considering a Constant Elasticity of Substitution (CES) framework, which offers more flexibil-

ity to study the limiting cases of complementarity and substitutability between fiat money and

crypto-currencies.

Additionally, we abstract from explicitly modeling the pecuniary and non-pecuniary benefits of

crypto-purchased goods, as was done in our static framework. Instead, we assume that consumers

perceive money-purchased and crypto-purchased goods as yielding different utilities, even though

firms view these goods as identical from a production standpoint.

Our first key result is that money is neither neutral nor super-neutral in our system. We

provide both analytical and numerical derivations of this non-neutrality in section 8, within both

the neoclassical and endogenous growth frameworks. A shock in the money supply growth rate

propagates through the economy by raising inflation, which in turn reduces real consumption growth

due to the increased cost of holding money. This affects capital accumulation and labor allocation as

the CIA constraint forces adjustments in consumption and investment. The impact of this shock is

amplified by the degree of substitutability between money-purchased and crypto-purchased goods,

leading to shifts in real wages and sectoral labor allocation.

The introduction of crypto-currencies alters the dynamics of monetary non-neutrality in our

model. While money is non-neutral due to the cash-in-advance (CIA) constraint on capital pur-

chases, where inflation raises the cost of holding money, crypto-currencies add another layer of

distortion. Labor is diverted from goods production to the operation of crypto-exchange platforms,

reducing the capital-labor ratio and leading to under-accumulation of capital and lower consump-

tion levels. Furthermore, crypto-currency fees distort the balance between money-purchased and

crypto-purchased goods, creating additional inefficiencies in the steady state economy.

In subsection 8.3, we illustrate how key economic variables respond to changes in the elasticity

of substitution between money-purchased and crypto-purchased goods over time. Despite steady

growth in capital, output, and consumption, the elasticity of substitution has little effect on these

broader growth trends, indicating that technological progress is the main driver of long-term eco-

nomic growth. However, real wages are much more sensitive, rising faster when crypto-purchased

goods are more easily substituted for money-purchased goods, as labor is allocated more efficiently.

In contrast, with stronger complementarity between goods, wage growth is slower. Price levels re-

main stable, reflecting the relatively small impact of substitution on overall cost structures. These

results highlight that while broader growth is driven by technology, labor markets and wages are

more responsive to changes in consumer preferences.

This framework allows us to analyze how fiat money and crypto-currencies interact within an

economy and how legal and economic constraints influence the dynamic allocation of resources

across different sectors. Our analysis provides valuable insights into how monetary policy and ex-

change platform fees impact the long-run growth trajectory of an economy, offering new perspectives

on the role of private digital currencies in modern monetary systems.

The remainder of the paper progresses as follows. We first present the connection between our
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results and the existing literature in section 2. We then present our dynamic model in section 3.

Then, we explore the solutions emerging from the optimization problem in section 4. Finally, we

provide a numerical analysis to study the response of the endogenous variables following a shock

to the exogenous constants in the final section.

2 Related Literature

This paper builds on the literature of private currencies, monetary economics, and currency compe-

tition. We start with the monetary model of Marchiori (2021), where a cash-in-advance constraint

requires consumers to exchange part of their money holdings for crypto-currencies to purchase spe-

cific goods. While Marchiori (2021) focuses on Bitcoin supply growth, our analysis examines how

exchange platform fees and consumer preferences for crypto-purchased goods affect the economy.

In this sense, we offer a partial equilibrium analysis, abstracting from the mining sector, similar

to other models in the literature (see Schilling & Uhlig (2019b), Lotz & Vasselin (2019), Benigno

et al. (2022)).

Another important contribution to the literature is highlighting key policy implications regard-

ing the crypto-money linkage. For instance, Schilling & Uhlig (2019a) argue that welfare remains

unaffected in a monetary model with cryptocurrency price dynamics. However, we provide evidence

in Table 4 and Table 9 that a shock to exchange platform transaction fees can distort welfare. The

welfare level varies depending on the functional forms of the utility function. Fernández-Villaverde

& Sanches (2019) characterizes the equilibrium welfare level in the presence of a private currency

as wasteful, where the authority fails to provide the necessary amount of money for transactions.

Our model does not include variables to make such a statement.

3 Model Setup

3.1 Cash-in-advance and dynamic budget constraints

Time is continuous and indexed by t ∈ [0,∞). The economy is populated by a constant number of

L identical households purchasing consumption goods with a combination of fiat money issued by

the government (henceforth, money) and crypto-currency purchased on exchange platforms. Each

consumer is infinitely-lived and maximizes intertemporal lifetime utility

U ≡
∫ ∞

0
e−ρt ln [u (cmt , cxt )] dt =

∫ ∞

0
e−ρt ln

[
(cmt )θ (cxt )

1−θ
]
dt, (1)

where ρ > 0 is the utility discount rate, and cmt and cxt indicate units of the consumption good

purchased at time t by means of money and crypto-currency, respectively.

Money is printed costlessly by the government and transferred to households via lump-sum

transfers. The single consumer uses money to purchase new capital, to directly purchase cmt units

of output or to purchase units of crypto-currency that are then used to purchase cxt units of output.
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Denoting aggregate real investment in physical capital by K̇t, aggregate nominal money by Mt and

the aggregate units of purchased crypto-currency by St, the CIA constraint that applies to money

holdings at the individual level reads

Mt

L
= Pt

K̇t

L
+ Ptc

m
t +Qt (1 + δt)

St

L
, (2)

where Qt is the nominal exchange rate between money and crypto-currency and δt are fees paid by

the household to acquire the crypto-currency from exchange platforms – i.e., the units of money

needed by households to purchase one unit of crypto on the market are Qt (1 + δt). The budget for

crypto-paid consumption goods is subject to the parallel crypto-CIA constraint

St

L
= P ∗

t c
x
t . (3)

From (2) and (3), the combined CIA constraint reads

Mt

L
= Pt

K̇t

L
+ Ptc

m
t +Qt (1 + δt)P

∗
t c

x
t . (4)

Each household supplies labor (inelastically) to firms and owns a fraction 1/L of the existing

capital stock Kt that firms use as an input in goods’ production. The household dynamic budget

constraint in money terms reads

Pt
K̇t

L
+

Ṁt

L
= wt + rt

Kt

L
+

Vt

L
− Ptc

m
t −Qt (1 + φt)P

∗
t c

x
t (5)

where wt is the monetary wage rate, rt is the rate of return to capital in terms of money, Vt equals

aggregate lump-sum transfers from the government to all households. We henceforth normalize

total population (workforce) to unity, L = 1, and transform (5) in real terms by defining real

money as mt = Mt/Pt, real money transfers as vt = Vt/Pt, and the real exchange rate qt =
QtP ∗

t
Pt

,

from which we obtain

K̇t + ṁt =
1

Pt
(wt + rtKt) + vt − cmt − qt (1 + δt) c

x
t −mtπt. (6)

Similarly, the combined CIA constraint (4) can be rewritten as

mt = K̇t + cmt + qt (1 + δt) c
x
t . (7)

The household problem consists of maximizing present-value utility (1) subject to the constraints

(6) and (7). As usual in the literature, we postulate that CIA constraints hold as strict equalities

– i.e., both the CIA constraint on money (2) and the CIA constraint on the crypto-currency (3)

are binding because both currencies are strictly dominated by physical capital in terms of rate of

returns. We are thus focusing on environments where the rate of money deflation (−πt = −Ṗt/Pt)

is smaller than the market rental rate of capital – which is the case in any economy with positive

inflation – and where agents do not accumulate crypto-currency as an asset – which is guaranteed

by a similar return-dominance condition that we will formulate and impose ex post via parameter

restrictions.
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3.2 Production

All consumption goods are produced with the same constant returns to technology by a competitive

sector: total final output equals Yt = F (Kt, atL
y
t ), where L

y is labor employed in goods production

and at is labor productivity. Real output is sold to households either as consumption or as new

physical capital:

F (Kt, atL
y
t ) = cmt + cxt + K̇t = Ct + K̇t (8)

where we have defined Ct ≡ Lcmt +Lcxt as aggregate real consumption and L is normalized to unity.

From the producers point of view, there is perfect substitutability among the three uses of the

final good, which implies price equalization: by no-arbitrage logic, each unit of output must yield

Pt units of money. New capital and money-paid consumption goods indeed have the same money

price Pt. For crypto-paid consumption goods, the production sector will charge a crypto-price P ∗
t

that generates the same unit revenue after conversion.

After selling cxt units against crypto-currency, producers will convert the associated crypto-

payments into money so as to compensate production factors. Converting the P ∗
t c

x
t units of crypto

received from customers into money involves paying a proportional fee to exchange platforms. We

set the fee rate for firms equal to δt, the same fee rate paid by households acquiring the crypto-

currency. The net money revenue from selling crypto-paid goods thus equals Qt (1− δt)P
∗
t c

x
t in

terms of money. By no-arbitrage with the revenue that firms would obtain by selling the same

units against money, Ptc
x
t , it follows that the crypto-price of crypto-purchased goods equals

P ∗
t =

Pt

Qt (1− δt)
. (9)

The total profits of the final sector in terms of money can thus be written as PtF (Kt, atL
y
t ) −

rtKt − wtL
y
t , and constant returns to scale imply the zero-profit condition

PtF (Kt, atL
y
t ) = rtKt + wtL

y
t = PtCt + PtK̇t. (10)

Note that the no-arbitrage condition (9) implies that the real exchange rate equals

qt =
QtP

∗
t

Pt
=

1

1− δt
, (11)

so that positive growth in exchange fees implies a real appreciation of the crypto-currency.

3.3 Exchange platform

We model the exchange platform as a competitive sector where an indefinite number of ‘crypto-

exchange firms’ provide services to consumers and firms and bear the cost of validating these

currency transactions. In this model, validation is the activity that crypto-exchange firms must

perform in every exchange operation between crypto-currency and money – which includes both

selling the crypto-currency to consumers and repurchasing it from final producers. The exchange

platform as a whole trades St = P ∗
t c

x
t units of the crypto-currency and employs 1− Ly

t workers to
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perform validation activities. Since labor is homogeneous and fully mobile between the final goods’

production sector and the exchange platform, the wage rate wt will be equalized between these

sectors.

At the aggregate level, the monetary inflows of the exchange platform are represented by fees

charged on consumers selling money against crypto – that is, money inflows for the platform – and

by fees charged on producing firms that sell crypto against money – that is, money retained from

the outflows reaching final goods’ producers:

Platform money inflows = QP ∗
t (1 + δt) c

x
t −QP ∗

t (1 + δt) c
x
t =

= 2δt ·Qt · P ∗
t c

x
t︸ ︷︷ ︸

St

. (12)

The monetary outflows of the exchange platform equal the wage bill, wt (1− Ly
t ). Zero profits in

the crypto-sector thus require

2δtQt · P ∗
t c

x
t︸ ︷︷ ︸

St

= wt (1− Ly
t ) . (13)

There are many ways to model the behavior of crypto-exchange firms consistently with the above

zero-profit condition. We leave this part of the model unspecified for the sake of generality: as

we show in sections 5 and 6, many relevant results can be established, for different variants of the

model, by simply imposing the zero-profit condition (13) without assuming a specific technology

for the exchange platform. Further results for the main variants of the model – the ‘neoclassical

case’ and the ‘AK case’ – will be obtained later under specific technology assumptions for both

goods production and exchange platform.

3.4 Aggregate constraints and equivalence

This subsection briefly (i) derives the aggregate constraint of the economy in money terms and

(ii) verifies the equivalence between the CIA constraint imposed on expenditures (7) and the legal

requirement that all factor incomes must be paid using the legal tender.

(i) Aggregate constraint of the economy in money terms. By combining the zero profit condition

of the production sector (10) with the household budget constraint (6), we obtain

K̇t = F (Kt, atL
y
t ) +

wt (1− Ly
t )

Pt
− cmt − qt (1 + δt) c

x
t + (vt −mtπt − ṁt) (14)

Using the definition of real exchange rate qt =
QtP ∗

t
Pt

, we can rewrite the zero profit condition for

the exchange platform (13) as

2δtqtPtc
x
t = wt (1− Ly

t ) . (15)

Substituting (15) in (14) and rearranging terms yields

K̇t = F (Kt, atL
y
t )− cmt − qt (1− δt) c

x
t + (vt −mtπt − ṁt)
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which, after substituting qt (1− δt) = 1 from (11), becomes

PtK̇t + Ptc
m
t + Ptc

x
t = PtF (Kt, atL

y
t ) + Pt [vt −mtπt − ṁt] . (16)

Expression (16) is the aggregate resource constraint of the economy in money terms. In real terms,

it reduces to the goods market clearing condition because, under a binding CIA constraint, real

money transfers vt represent the increase in real money holdings,

vt =
Ṁt

Pt
=

Ṁt

Mt
·mt =

(
ṁt

mt
+ πt

)
·mt = ṁt +mtπt, (17)

so that the last term in square brackets in (16) cancels out, and dividing boths sides by Pt yields

the market clearing condition (8).

(ii) Equivalence between CIA constraint and legal requirement on factor payments. Recalling

the CIA constraint in real terms, use (11) to rewrite (7) as

mt = K̇t + cmt +
1 + δt
1− δt

cxt , (18)

which, after some manipulation, yields

mt = K̇t + cmt + cxt +
2δt

1− δt
· cxt . (19)

Multiplying both sides of (19) by Pt and using again (11) yields

Mt = PtK̇t + Ptc
m
t + Ptc

x
t︸ ︷︷ ︸

rtKt+wtL
y
t

+ 2δt · qtPtc
x
t︸ ︷︷ ︸

wt(1−Ly
t )

(20)

where the last term coincides with the exchange plarform’s total wage bill by the zero profit

condition (15). Result (20) confirms that the CIA constraint imposed on expenditures (7) is

equivalent to the assumed legal requirement that all factor incomes must be paid using money, the

legal tender.

4 Intertemporal choices and equilibrium notions

4.1 Utility maximizing conditions

The household problem consists of maximizing present-value utility (1) subject to the constraints

(6) and (7). The current-value Hamiltonian for the household problem can be written as

= ln
[
(cmt )θ (cxt )

1−θ
]
+ λK

t K̇t + λM
t ṁt + λS

t

[
mt − K̇t − cmt − qt (1 + δt) c

x
t

]
=

= ln
[
(cmt )θ (cxt )

1−θ
]
+ λK

t It + λM
t ṁt + λS

t [mt − It − cmt − qt (1 + δt) c
x
t ] , (21)

where we have defined capital investment as K̇ = I. This allows us to treat real money m and

capital K as state variables while cmt , cxt and It act as control variables; all prices are taken as
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given under perfect foresight, λK
t is the shadow price of capital accumulation, λM

t is the shadow

price of money accumulation, and λS
t is the Khun-Tucker multiplier attached to the CIA constraint.

Replacing ṁt by means of expression (6), and collecting terms for K̇ = I, the Hamiltonian (21)

can be rewritten as

= ln
[
(cmt )θ (cxt )

1−θ
]
+
(
λK
t − λS

t − λM
t

)
· It + (22)

+λM
t

[
1

Pt
(wt + rtKt) + vt − cmt − qt (1 + δt) c

x
t −mtπt

]
+

+λS
t · [mt − cmt − qt (1 + δt) c

x
t ] .

The necessary conditions for utility maximization are therefore

cmt
= 0 → θ

cmt
− λM

t − λS
t = 0

cxt
= 0 → 1− θ

cxt
−
(
λM
t − λS

t

)
qt (1 + δt) = 0

It = 0 → λK
t − λS

t = λM
t

Kt = ρλK
t − λ̇K

t → ρλK
t − λ̇K

t = λM
t

rt
Pt

Mt = ρλM
t − λ̇M

t → ρλM
t − λ̇M

t = λS
t − λM

t πt

along with the transversality conditions

lim
t→∞

λK
t Kte

−ρt = 0, (23)

lim
t→∞

λM
t mte

−ρt = 0. (24)

For future reference, we can rewrite the utility-maximizing conditions as

θ

cmt
= λK

t (25)

1− θ

cxt
= λK

t · qt (1 + δt) (26)

λK
t = λM

t + λS
t (27)

λ̇K
t

λK
t

= ρ− λM
t

λK
t

· rt
Pt

(28)

λ̇M
t

λM
t

= ρ+ πt −
λK
t − λM

t

λM
t

(29)

Equations (25) and (26) imply that the ratio between money-paid and crypto-paid consumption

goods is determined by tastes and by the gross real exchange rate between money and crypto-

currency:
cmt
cxt

=
θ

1− θ
· qt (1 + δt) =

θ

1− θ
· 1 + δt
1− δt

(30)

where the last term follows from (11). As intuitive, the share of consumption in money-purchased

goods increases with higher crypto-fees.
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The co-state equations (28)-(29) can be reduced to a single differential equation by defining the

composite multiplier λR
t ≡ λM

t /λK
t , which evolves over time according to

λ̇R
t

λR
t

=
λ̇M
t

λM
t

− λ̇K
t

λK
t

= πt −
λK
t − λM

t

λM
t

+
λM
t

λK
t

· rt
Pt

that is,
λ̇R
t

λR
t

= πt −
1− λR

t

λR
t

+ λR
t · rt

Pt
. (31)

Equation (31) determines the joint dynamics of the shadow values of money and capital and will

be used later to determine the properties of long-run equilibria.

4.2 Steady-state and BGP equilibria

The work-horses of dynamic macroeconomics suggest considering two reference notions of long-

run equilibria. The first characterizes models of exogenous growth, i.e., Ramsey-like economies

where diminishing returns to capital drive down the interest rate over time and imply that, in

the absence of productivity growth, consumption and output per capita are stationary in the

long run. In the present context, if we assume that the production function of the final sector

exhibits diminishing returns to capital (at the firm and at the aggregate level) alongside a constant

exogenous level of labor productivity, we obtain a Ramsey-like economy that should, at least in

principle, admit a steady-state equilibrium in the long run characterized by constant consumption

levels. We investigate this point in the first variant of our model, which we label as the ‘neoclassical

case’.

The second variant of the model is suggested by the endogenous growth literature. In this

class of models, the economy’s rate of return is sustained in the long run by endogenous forces

that eliminate strictly diminishing returns to accumulable factors, implying persistent consumption

growth in the long run. In the present context, if we assume that the production function of the

final sector incorporates learning-by-doing spillovers through labor productivity – whereby capital

exhibits diminishing returns at the firm level but non-diminishing returns at the aggregate level –

we obtain a Romer-like economy (Romer (1989)) that should, at least in principle, admit a balanced

growth path equilibrium delivering sustained growth in consumption and output in the long run.

We will refer to this variant of the model as to the ‘AK case’.

5 The Neoclassical case

This section describes the general properties of the steady state equilibrium. These properties hold

regardless of the specific technology used by the exchange platform and are generally valid for

any static CRS production function in goods production (i.e., a linearly homogeneous technology

with constant labor productivity: at = a > 0). In section 8 we will specify technologies for both

the exchange platform and the goods sector to derive further results on the impact of technology

shocks.
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5.1 Consumption and money non-neutrality

Consider an equilibrium with constant consumption. From (25) and (26), stationarity in cmt and

cxt requires a constant multiplier λK
t as well as constant crypto-fees,

d

dt
qt (1 + δt) =

d

dt

1 + δt
1− δt

= 0,

which will be the case for suitable specifications of the technology of the exchange platform. From

(28), the steady state λ̇K
t = 0 requires that the real rental rate for capital equals the utility dicount

rate weighted by the composite multiplier λR
t ≡ λM

t /λK
t previously defined,

rt
Pt

=
1

λR
t

· ρ. (32)

Since ρ is constant and rt/Pt equals the physical marginal product of capital, a constant real interest

rate requires λ̇R
t = 0 in (31), which yields

λR
t =

1

1 + ρ+ πt
. (33)

By combining (32) with (33), a steady-state equilibrium in the neoclassical case is characterized by

the real rate of return
rt
Pt

= ρ · (1 + ρ+ πt) . (34)

Expression (34) shows three important results. First, money is not neutral: a nominal variable –

the money inflation rate, πt – affects real variables in equilibrium – the physical marginal prod-

uct of capital, rt/Pt. Second, a neoclassical steady state with constant real interest requires the

inflation rate to be constant over time, which in turn imposes a restriction on monetary growth

(i.e., a constant money growth rate set by the authority). Third, inflation tends to reduce capital

accumulation. In the standard Ramsey model without a CIA constraint on capital purchases, the

steady-state condition rt/Pt = ρ implies a lower interest rate and a higher capital-labor ratio than

condition (34) – provided that the money inflation rate is πt > −ρ. In other words, unless we

observe substantial deflation, the cash-in-advance constraint implies under-accumulation of capital

and inefficiently low consumption.

The economic intuition for non-neutrality of money is that the CIA constraint on new capital

purchases forces agents to keep money to make real investment but positive inflation increases the

real cost of holding money, which affects the real return to investment from the household point of

view. This source of non-neutrality does not apply to the crypto-currency – in fact, we have not

postulated that cyrpto-currency is necessary to purchase real investment. The crypto-currency is

non-neutral for other reasons, namely, the fact that its circulation absorbs real resources (in the

form of labor employed in exchange platforms). This point is clarified below.
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5.2 Non-neutralities: money versus crypto

In order to assess the role of the crypto-currency, impose the conditions for a neoclassical steady

state in the CIA constraint: setting K̇t = 0 in (7), we obtain

mt = cmt +
1 + δt
1− δt

cxt =
1

θ
cmt (35)

where the last term follows from substituting the utility-maximizing consumption ratio (30). From

(35), a steady state in consumption implies a steady state in real money supply, ṁt = 0, which

means that the money inflation rate equals the growth rate of money supply. Assuming that the

monetary authority lets nominal grow at the constant rate gM , the inflation rate is constant as

well,

πt = Ṁt/Mt ≡ gM . (36)

Since πt only depends on money growth, the dynamics of the supply of crypto-currency do not

affect the steady-state condition (34) through this channel: money inflation is independent of

crypto inflation. However, the existence of the crypto-market does affect the real interest rate in

(34) through a labor reallocation effect. In a neoclassical world, the physical marginal product of

capital depends on the capital-labor ratio in goods’ production, Kt/L
y
t , and Ly

t is in turn affected

by the fact that part of the workforce, L−Ly
t , is at the same time employed in exchange platforms.

Since the crypto-market subtracts resources – in this case, labor inputs – that would have been

otherwise used in goods production, the existence of the crypto-currency exherts an additional

pressure towards under-accumulation and inefficiently low consumption levels in the steady state.

In fact, if all the workforce L could be employed in goods production, condition (34) would be met

with an identical capital-labor ratio – say, K ′
t/L = Kt/L

y
t – but such ratio would be associated to

higher levels of capital and output (L > Ly
t would imply K ′

t > Kt).

Another effect of the crypto-market is that the fee rate δt distorts the relative expenditure

shares of money-purchased and crypto-purchased goods, which is immediately evident from (30).

In this respect, the extent of the distortion depends on the technology of the exchange platform

and on the resulting level of fees. We will present a complete analytical derivation of the balanced

growth equilibrium under a specific technology for the exchange platform in section 8.

6 The AK case

Assume that the final good sector comprises an indefinite number of firms exploiting the same

technology displaying constant returns to scale at the firm level. Despite diminishing marginal

returns to both labor and capital at the firm level, learning-by-doing spillovers at the sectoral level

induce constant marginal returns to capital – that is, a constant real interest rate – in the spirit

of Romer (1986) and Romer (1989). Assuming identical technologies across firms guarantees a

symmetric equilibrium where the economy’s final consumption good is produced according to an

AK technology.
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6.1 Goods production with spillovers

Assume that the final good sector comprises an indefinite number of firms indexed by n. Each

firm exploits the production function yn,t = kn,t
α
(
ātℓ

y
n,t

)1−α
where yn,t is output, kn,t is physical

capital, ℓyn,t is labor, āt is workers’ productivity, α ∈ (0, 1) is an elasticity parameter. At the firm

level, labor productivity āt is taken as given, and profit maximization yields the usual first-order

conditions

rt
Pt

= α
yn,t
kn,t

, (37)

wt

Pt
= (1− α)

yn,t
ℓyn,t

, (38)

Since firms use identical technologies, the capital-labor ratio is the same in each firm and coincides

with the capital-labor ratio at the sectoral level, kn,t/ℓ
y
n,t = Kt/L

y
t . Assume learning-by-doing

spillovers at the sectoral level whereby the use of capital increases workers’ productivity. We

postulate the spillover function ā = A
1

1−α (Kt/L
y
t ), which implies that the productivity of each

worker increases with the capital intensity of the sector. The intuition is that capital use induces

complementary efficiency gains: each worker uses machines and a more intense use of machines

in the sector makes each unit of labor more efficient. Substituting the spillover function in firms’

technologies, sectoral output becomes linear in sectoral capital,

Yt = AKt, (39)

like in standard growth models á la Romer (1989). Consequently, the equilibrium interest and

wage rates are

rt
Pt

= αA, (40)

wt

Pt
= (1− α) ·A · (Kt/L

y
t ) . (41)

The fact that the real return to capital αA is constant creates the possibility of balanced growth

paths (BGPs), that is, scenarios in which the economy exhibits sustained endogenous growth in the

long run. Given the non-neutrality of money and crypto-currency, the natural question is whether

nominal variables will affect not only income levels but also income growth in the long run. The

next subsection tackles this issue in general terms without assuming a specific technology for the

exchange platform.

6.2 Balanced growth equilibrium: general properties

Consider a balanced growth equilibrium where consumption levels of both goods grow at the con-

stant rate

gC =
ċmt
cmt

=
ċxt
cxt

12



and there is a constant rate of crypto-fees, δ̇t = 0, which will be the case for suitable specifications

of the technology of the exchange platform. From (28), a constant growth rate −λ̇K
t /λK

t = gC > 0

requires

gC =
λM
t

λK
t

· αA− ρ > 0 (42)

where we have substituted the interest rate rt/Pt = αA from (40). From (42), balanced growth

requires λR
t ≡ λM

t /λK
t to be constant as well: imposing λ̇R

t = 0 in (31) yields the second-order

equation

αA ·
(
λR
t

)2
+ λR

t (1 + πt)− 1 = 0

with positive root given by

λR
t =

√
(1 + πt)

2 + 4αA− (1 + πt)

2αA
. (43)

Substituting this result into (42), the balanced growth rate equals

gC ≡ ċmt
cmt

=
ċxt
cxt

=

√
(1 + πt)

2 + 4αA− (1 + πt)

2
− ρ (44)

Result (44) shows that money is neither neutral nor superneutral: the inflation rate affects real

growth in a BGP equilibrium. In particular, the derivative of the balanced growth rate with respect

to πt equals
∂gC

∂πt
= − 4αA+ 2πt + π2

t

2 (1 + πt)
2 + 8αA

(45)

and is strictly negative for any positive (or even negative, but relatively small) rate of money

inflation. That is, positive inflation slows down real growth in this model. The reason is, con-

ceptually, the same as that in the neoclassical case: the CIA constraint on new capital purchases

forces agents to keep money to make real investment but positive inflation increases the real cost

of holding money, which affects the real return to investment from the household point of view.

Differently from the neoclassical case, where the interest rate determines the stationary level of

consumption in the steady state, in the AK variant of the model the interest rate determines the

growth rate of consumption along the balanced growth path. Therefore, in the AK case, the nega-

tive effect money inflation on the real return to investment translates into a negative effect on the

economy’s growth rate.

The transmission from monetary policy to inflation can be addressed by imposing the conditions

for a BGP equilibrium in the CIA constraint. Setting K̇t = gCKt in (7), we obtain

mt = gCKt + cmt +
1 + δt
1− δt

cxt = gCKt +
1

θ
cmt (46)

where the last term follows from substituting the utility-maximizing consumption ratio (30). Since

a BGP requires capital and consumption to grow at rate gC , the ratio cmt /Kt must be constant:

13



denoting this (endogenous) variable as χm
CD ≡ cmt /Kt we can rewrite (46) as1

mt =

(
gC +

χm
CD

θ

)
·Kt. (47)

Equation (47) implies that a constant growth rate gC requires that real money supply grows over

time at the same constant rate, ṁt/mt = K̇t/Kt = gC . This in turn means that a constant growth

rule for nominal money supply, Ṁt/Mt = gM , will imply a constant inflation rate π and a constant

real growth rate for the economy gC that satisfies the BGP relation

gM = π + gC . (48)

Using (44) to substitute gC in (48) and rearranging terms yields√
(1 + πt)

2 + 4αA− (1− πt) = 2
(
gM + ρ

)
(49)

The above results obey a precise causality: given the exogenous monetary rule set by authorities,

the growth rate of money supply gM determines inflation π according to (49). The inflation rate π

then determines the economy’s real growth rate gC according to equation (44).

Since money inflation only depends on nominal money growth, the dynamics of the supply of

crypto-currency do not affect real growth through this channel: money inflation, πt = Ṗt/Pt, is

independent of crypto inflation, π∗
t = Ṗ ∗

t /P
∗
t . The main consequence of the crypto-currency is a

permanent change in the level of the real wage induced by a labor reallocation effect. Expression (41)

implies that in a BGP equilibrium – where capital grows at rate ḡt while employment levels Ly
t and

L− Ly
t are stationary – the real wage will grow at the balanced rate ḡt while sectoral employment

determines a permanent level effect: the higher the employment in the exchange platform L− Ly
t ,

the lower the levels of the equilibrium real wage wt/Pt = (1/Ly
t ) · (1− α)AKt along the BGP. We

will present a complete analytical derivation of the balanced growth equilibrium under a specific

technology for the exchange platform in section 8.

7 Substitutability and money-crypto interactions

In this section, we extend the model to replace Cobb-Douglas perferences with a CES utility func-

tion. The next section shows how the relevant dynamic system changes when money-purchased and

crypto-purchased goods are allowed to be strict complements or strict substitutes. The subsequent

sections derive general results for neoclassical steady-state equilibria and for BGP equilibria with

endogenous growth in the same vein as the previous sections.

7.1 Intertemporal choices under CES preferences

Suppose that the instantaneous utility function u (cmt , cxt ) in (1) is replaced by the CES form

u (cmt , cxt ) =
[
θ · (cmt )

σ−1
σ + (1− θ) · (cxt )

σ−1
σ

] σ
σ−1

, (50)

1Subsection 8.4 includes a complete derivation of the equilibrium value of χm
CD.
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where σ > 0 is the elasticity of substitution between money-purchased and crypto-purchased goods.

When σ < 1, the consumer perceives the two types of consumption as strict complements. When

σ > 1, the consumer perceives the two types of consumption as strict substitutes. Letting σ → 1,

the utility function reduces to the Cobb-Douglas form u (cmt , cxt ) = (cmt )θ (cxt )
1−θ assumed before.

In this modified model, the household maximizes intertemporal utility

U ≡
∫ ∞

0
e−ρt ln [u (cmt , cxt )] dt

subject to the same dynamic constraints considered before. Proceeding with the same steps shown

in section 4, we obtain a system of utility-maximizing conditions in which the marginal utilities

are not separable: both ∂u/∂cmt and ∂u/∂cxt depend on money-purchased and on crypto-purchased

quantities, cmt and cxt . More precisely, system (25)-(29) is replaced by

1

u (cmt , cxt )
· ∂u

∂cmt
= λK

t (51)

1

u (cmt , cxt )
· ∂u

∂cxt
= λK

t · qt (1 + δt) (52)

λK
t = λM

t + λS
t (53)

λ̇K
t

λK
t

= ρ− λM
t

λK
t

· rt
Pt

(54)

λ̇M
t

λM
t

= ρ+ πt −
λK
t − λM

t

λM
t

(55)

The key difference with respect to the model with Cobb-Douglas utility is that relative expenditure

shares now depend on relative prices. By combining (51) with (52), we obtain the utility-maximizing

condition
∂u

∂cmt
· qt (1 + δt) =

∂u

∂cxt
,

where we can substitute the marginal utilities calculated from (50),

∂u

∂cmt
= θ ·

(
u (cmt , cxt )

cmt

) 1
σ

and
∂u

∂cxt
= (1− θ) ·

(
u (cmt , cxt )

cxt

) 1
σ

, (56)

obtaining the consumption ratio

cmt
cxt

=

[
θ

1− θ
· qt (1 + δt)

]σ
. (57)

Dividing both sides by qt (1 + δt) yields the real expenditure ratio, i.e., the expenditure on money-

purchased goods relative to that on crypto-purchased goods,

cmt
qt (1 + δt) cxt

=

(
θ

1− θ

)σ

·
(
1− δt
1 + δt

)1−σ

, (58)

where we have used (11) to eliminate the real exchange rate on the right hand side. Expression

(58) shows that a change in the crypto-fee has generally ambiguous effects on relative expenditures.
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If the consumer perceives money-purchased and crypto-purchased goods as complements, σ < 1,

an increase in the fee rate δt prompts them to reduce the left hand side of (58) – that is, to

reduce relative spending on money-purchased goods to spend a higher fraction of consumption

expenditure on crypto-purchased goods. Viceversa, if the household perceives money-purchased

and crypto-purchased goods as substitutes, σ > 1, an increase in the fee rate δt prompts them

to reduce the expenditure share on crypto-purchased goods. Armed with this result, we can now

investigate the general properties of neoclassical steady-state equilibria and of BGP equilibria under

CES preferences.

7.2 Neoclassical steady state with CES preferences

In this subsection, we consider a neoclassical steady state equilibrium with constant consumption.

The first part of the analysis is very similar to that in section 5, with small differences that

we emphasize below. The distortions induced by the crypto-market become more evident in the

complete analytical solution, which clarifies reallocation effects and their consequences for the

steady-state capital stock.

From (51) and (52), stationarity in cmt and cxt requires a constant multiplier λK
t as well as

constant crypto-fees,
d

dt
qt (1 + δt) =

d

dt

1 + δt
1− δt

= 0,

which will be the case for suitable specifications of the technology of the exchange platform. From

(54), the steady state λ̇K
t = 0 requires that the real rental rate for capital equals the utility dicount

rate weighted by the composite multiplier λR
t ≡ λM

t /λK
t previously defined: rt/Pt = ρ/λR

t . Since ρ

is constant and rt/Pt equals the physical marginal product of capital, a constant real interest rate

requires λ̇R
t = 0 in (31), which yields λR

t = 1/ (1 + ρ+ πt) and, hence, a steady-state real rate of

return
rt
Pt

= ρ · (1 + ρ+ πt) .

As noted before, (i) money is not neutral and (ii) inflation tends to reduce capital accumulation.

In order to assess the role of the crypto-currency, impose the conditions for a neoclassical steady

state in the CIA constraint: setting K̇t = 0 in (18), we obtain

mt = cmt ·

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]

(59)

where the last term follows from substituting the consumption expenditures ratio (58). Since δ̇t = 0

by construction of the steady state, result (59) implies that stationary consumption is associated

with ṁt = 0, that is, the money inflation rate equals the growth rate of money supply set by the

authority, πt = Ṁt/Mt. Since πt only depends on money growth, the dynamics of the supply of

crypto-currency do not affect the steady-state condition (34) through this channel: money infla-

tion equals πt = Ṁt/Mt and is therefore independent of crypto-currency supply. This conclusion

also holds with Cobb-Douglas preferences, as shown in subsection 5. However, differently from the
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model with Cobb-Douglas preferences, the degree of substitutability between money-purchased and

crypto-purchased goods affects the price level. The right hand side of (59) shows that when con-

sumers perceive money-purchased and crypto-purchased goods as strict complements (substitutes),

a higher fee tends to increase (reduce) the equilibrium real money supply at given consumption

levels. The reason is that under complementarity (substitutability), higher fees prompt consumers

to spend relatively more on crypto-purchased goods, exherting a downward pressure on the relative

price of money-purchased goods and, hence, an upward pressure on the equilibrium real money

supply at given consumption levels.

Besides the effect on price levels, it should be remembered that the crypto-currency is not

neutral because, as shown in subsection 5, it affects the real interest rate in (34) through a labor

reallocation effect : the physical marginal product of capital depends on the capital-labor ratio in

goods’ production, Kt/L
y
t , and Ly

t is in turn affected by employment in exchange platforms via the

labor market.

7.3 Balanced growth equilibrium with CES preferences

In this subsection, we consider a BGP equilibrium with sustained growth generated by the technol-

ogy described in subsection 6.1: sectoral spillovers induce linear returns to capital at the aggregate

level, Yt = AKt, with real factor rewards given by rt/Pt = αA and wt/Pt = (1− α) ·A · (Kt/L
y
t ).

The general properties of the BGP are as follows. Consider a balanced growth equilibrium

where consumption levels of both goods grow at the constant rate gC = ċmt /cmt = ċxt /c
x
t , and there

is a constant rate of crypto-fees, δ̇t = 0, which will be the case for suitable specifications of the

technology of the exchange platform. Time-differentiating (51) and (52) with δ̇t = 0 we obtain

λ̇K
t

λK
t

=
1
∂u
∂cmt

d

dt

∂u

∂cmt
− u̇ (cmt , cxt )

u (cmt , cxt )
, (60)

λ̇K
t

λK
t

=
1
∂u
∂cxt

d

dt

∂u

∂cxt
− u̇ (cmt , cxt )

u (cmt , cxt )
. (61)

From (50), the growth rate of utility equals

u̇ (cmt , cxt )

u (cmt , cxt )
=

θ · (cmt )
σ−1
σ gC + (1− θ) · (cxt )

σ−1
σ gC

θ · (cmt )
σ−1
σ + (1− θ) · (cxt )

σ−1
σ

= gC . (62)

From (56), the growth rate of marginal utility for either good reads

1
∂u
∂c·t

d

dt

∂u

∂c·t
=

1

σ

[
u̇ (cmt , cxt )

u (cmt , cxt )
− gC

]
= 0 (63)

Substituting results (62)-(63) in either (60) or (61) yields λ̇K
t /λK

t = −gC . Hence, from (54) and

the constant interest rate rt/Pt = αA, we have

gC =
λM
t

λK
t

· αA− ρ (64)
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which implies a constant composite multiplier λR
t = λM

t /λK
t . Setting λ̇R

t = 0 in (31) yields again

result (43) and thereby the balanced growth rate

gC ≡ ċmt
cmt

=
ċxt
cxt

=

√
(1 + πt)

2 + 4αA− (1 + πt)

2
− ρ. (65)

As noted before, any positive (or even negative, but relatively small) rate of money inflation reduces

gC because money inflation increases the cost of holding money – and holding money is necessary

to have the liquidity needed to make real investment. Result (65) shows that the balanced growth

rate under CES preferences is the same as in the Cobb-Douglas case with σ = 1. However, the

current hypothesis that goods can be perceived as complements modifies the impact of monetary

policy on the general price level. To see this formally, use result (58) to write real consumption

expenditures as

cmt + qt (1 + δt) c
x
t = cmt ·

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]

(66)

and impose the conditions for a BGP equilibrium in the CIA constraint: setting K̇t = gCKt in (7),

we obtain

mt = ḡtKt + cmt + qt (1 + δt) c
x
t = ḡtKt + cmt ·

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]

(67)

where the last term follows from (66). Since a BGP requires capital and consumption to grow at

rate gC , the ratio cmt /Kt must be constant: denoting this (endogenous) variable as χm ≡ cmt /Kt

we can rewrite (67) as2

mt =

{
gC + χm

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]}

·Kt. (68)

Equation (68) implies that a constant growth rate gC requires that real money supply grows over

time at the same constant rate, ṁt/mt = K̇t/Kt = gC . This in turn means that a constant growth

rule for nominal money supply, Ṁt/Mt = gM , will imply a constant inflation rate π and a constant

real growth rate for the economy gC that satisfies the BGP relation gM = π + gC . As shown

before (cf. equation (49) in the previous section), the growth rate of money supply gM determines

inflation π according to √
(1 + π)2 + 4αA− (1− π) = 2

(
gM + ρ

)
,

and the inflation rate π then determines the economy’s real growth rate gC according to equation

(65). The novel result contained in (68) is that the degree of substitutability between money-

purchased and crypto-purchased goods directly affects the whole time path of the price level.

Substituing mt = Mt/Pt in (68) and rearranging terms, we obtain

Pt =
1

gC + χm

[
1 +

(
1−θ
θ

)σ ·
(
1+δt
1−δt

)1−σ
] · Mt

Kt
. (69)

2Subsection 8.4 includes a complete derivation of the equilibrium value of χm.
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Result (69) implies that crypto-fees permanently reduce (increase) the money price level when

consumers perceive money-purchased and crypto-purchased goods as complements (substitutes).

In particular, if the monetary authority sets a constant money growth rule from time zero onwards

and the crypto-fee rate is constant from time zero onwards, the whole time path of the price level

is given by

Pt =
1

gC + χm

[
1 +

(
1−θ
θ

)σ ·
(
1+δ
1−δ

)1−σ
] · M0

K0
· eπt. (70)

Expression (70) shows that, for a given chosen monetary policy rule gM , which determines real

growth gC and the inflation rate π, the elasticity of substitution σ and the crypto-fee rate δ deter-

mine how high or low the initial price level P0, and thereby all subsequent price levels, will be. Under

complementarity, σ < 1, a higher δ yields a lower price level because higher crypto-fees prompt con-

sumers to reduce their relative demand for money-purchased goods. Under substitutability, σ > 1,

a higher δ yields a higher price level because higher crypto-fees prompt consumers to increase their

relative demand for money-purchased goods. Since δ is positively related to the real exchange rate

– see equation (11) – it follows that a real appreciation of the crypto-currency induced by higher

crypto-fees affects the price level of money-purchased goods permanently and in opposite directions

depending on the value of the elasticity of substitution σ.

As we have shown in section 6.2, the crypto-market permanently affects real wage levels via a

labor reallocation effect : the higher the employment in the exchange platform L − Ly
t , the lower

the levels of the equilibrium real wage wt/Pt = (1/Ly
t ) · (1− α)AKt along the BGP. This result is

obviously confirmed in the model with CES preferences.

8 Complete derivations and shocks

This section presents full analytical derivations of (i) the Neoclassical steady state and (ii) the BGP

equilibrium for the extended model with CES preferences, which allows us to derive more general

results (the predictions for the model with Cobb-Douglas preferences can be obtained as a special

case by setting σ = 1). For each variant of the model, we obtain a reduced system of equilibrium

relationships that determines all endogenous variables and allows us to investigate the effect of

exogenous shocks.

8.1 Exchange platform: specifics

Assume that the exchange platform is a competitive sector with free entry of ‘exchange firms’.

Each firm n hires ℓxn,t workers to perform currency exchange operations according to a linear

technology: each worker’s cost to the firm is proportional to the monetary value of the transaction,

with proportionality factor ξ > 0,

wt = ξ · ηj,t, (71)
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where wt is the wage rate prevailing in the labor market and ηj,t is the money value of the transaction

performed by agent j. Total employment in the currency exchange sector, Lx
t =

∑
n ℓ

x
n,t = 1− Ly

t ,

satisfies the demand for currency conversion. Therefore, the sectoral wage bill reads

wt · (1− Ly
t ) = ξ ·

∫ Lx
t

0
ηj,tdj = ξ · (Ptc

x
t + Ptc

x
t ) , (72)

where the last term on the right hand side is the market clearing condition for exchange services

whereby the money value of total transactions includes those (i) requested by consumers purchasing

cxt and those (ii) requested by firms selling cxt . Exchange firms take the exchange rate as given and

set the crypto-fee rate in Bertrand competition. The resulting zero-profit condition, as shown in

subsection 3.3, is 2δtQtP
∗
t c

x
t = wt (1− Ly

t ) and can be rewritten in real terms as

2δtqtc
x
t =

wt

Pt
· (1− Ly

t ) . (73)

From (72) and (73), it follows that δtqt = ξ. Combining this result with the real exchange rate in

(11), the crypto-fee rate associated with zero profits in the exchange platform reads

δt =
ξ

1 + ξ
≡ δ (74)

which is constant over time. We now have all the elements to derive anlytically the neoclassical

steady state equilibrium and the BGP equilibrium in the AK model.

8.2 Neoclassical steady state: full derivation

In the neoclassical case, we normalize labor productivity at = 1 and assume a Cobb-Douglas

production function Yt = (Kt)
α (Ly

t )
1−α

for the final setor. The profit-maximizing conditions yield

the demand schedules for capital and labor,

rt
Pt

= α ·
(
Ly
t

Kt

)1−α

, (75)

wt

Pt
= (1− α) ·

(
Kt

Ly
t

)α

. (76)

Combining (75) with the steady-state condition for the interest rate (34) and steady-state inflation

rate πt = gM from (36) yields the capital-labor ratio for the final sector in the neoclassical steady

state,

Kt

Ly
t

=

[
α

ρ · (1 + ρ+ gM )

] 1
1−α

. (77)

From the zero-profit condition in the exchange platform (73) and the equilibrium fee rate (74),

labor demand by currency-exchange firms is

wt

Pt
= 2

δtqt
1− Ly

t

cxt =
2ξ

1− Ly
t

cxt . (78)
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The equilibrium in the labor market is characterized by real wage equalization which, from (76)

and (78), implies

Kt

Ly
t

=

[
2ξ

1− α
· cxt
1− Ly

t

] 1
α

. (79)

Using (11) and (74), the ratio between money-purchased and crypto-purchased goods (57) equals

cmt
cxt

=

[
θ (1 + 2ξ)

1− θ

]σ
. (80)

Using (74), the steady-state level of real money supply (35) equals

mt = cmt ·
[
1 +

(
1− θ

θ

)σ

· (1 + 2ξ)1−σ

]
. (81)

The goods’ market clearing condition (8) in the steady state implies

cxt = (Kt)
α (Ly

t )
1−α − cmt . (82)

Reduced system (neoclassical steady state). Equations (77), (79), (80), (81) and (82)

form a reduced equilibrium system that allows us to determine the steady state values of inputs

and consumption levels – and thereby all the related endogenous variables of interest – in the

neoclassical steady state:

Kss

Ly
ss

=

[
α

ρ · (1 + ρ+ gM )

] 1
1−α

(83)

Kss

Ly
ss

=

[
2ξ

1− α
· cxss
1− Ly

ss

] 1
α

(84)

cmss
cxss

=

[
θ (1 + 2ξ)

1− θ

]σ
(85)

mss =

[
1 +

(
1− θ

θ

)σ

· (1 + 2ξ)1−σ

]
· cmss (86)

cxss = (Kss)
α (Ly

ss)
1−α − cmss (87)

The reduced system (83)-(87) comprises five equations determining five unknowns: capital Kss,

labor employed in the final sector Ly
ss, consumption of money-purchased goods cmss, consumption

of crypto-purchased goods cxss, and real money holdings mss. The exogenous parameters reflect

technologies (α, ξ), preferences (θ, σ, ρ) and the monetary policy rule set by the authority, Ṁt/Mt =

gM . The equilibrium values (Kss, L
y
ss, cmss, c

x
ss,mss) allow us to calculate real factor prices rt/Pt and

wt/Pt from (75)-(76), the crypto-fee rate from (74), the real exchange rate from (11), and steady-

state utility u (cmt , cxt ) from (50). The next subsection presents some numerical results describing

the effects of exogenous shocks.
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8.3 Neoclassical steady state: numerical analysis

In this subsection, we introduce a numerical illustration of the neoclassical steady state and study

cases of strict complementarity, strict substitutability, and Cobb-Douglas preferences. We then

proceed to assess the effects of exogenous changes in the growth rate of nominal money, in the

crypto-fee rate (due to an exogenous rise in ξ), and in the taste parameter θ on the endogenous

variables in the reduced system above. Parameter values are reported in Table 1 along with the

equilibrium level of the endogenous variables in Table 2.

Table 1: Parameter values.

Preferences Technology Monetary policy rule

θ = 0.3 α = 0.3 gM = 0.045

ρ = 0.02 ξ = 0.05

Table 2: Benchmark results.

Kss Ly
ss cmss cxss

r
p

w
p ϕ q u (cmt , cxt )

σ = 0.5 40.3413 0.9219 1.1660 1.6982 0.0213 2.1748 0.0476 1.050 1.4937

σ = 1 39.8858 0.9115 0.9073 1.9246 0.0213 2.1748 0.0476 1.05 -

σ = 1.5 39.4957 0.9026 0.6857 2.1185 0.0213 2.1748 0.0476 1.050 1.5754

8.3.1 Neoclassical shock analysis

An increase in gM (faster monetary growth). A 10% increase in the money supply leads to mon-

etary non-neutrality, reflected in a decline in capital stock (Kss), overall consumption (cmss and

cxss) , and real wages (wp ) across all substitution levels (σ) in Table 3. The reduction in capital

investment is driven by inflation eroding real savings, while consumption decreases due to reduced

purchasing power. Utility declines more sharply when money and crypto-currencies are substitutes

(σ = 1.5) because consumers shift more heavily toward crypto-currencies, amplifying the negative

impact of rising transaction costs. The rental rate of capital ( rp) increases due to reduced capital

availability, while crypto-fees (ϕ) and the real exchange rate (q) remain unchanged. This monetary

non-neutrality arises from inflationary pressure, negatively impacting the economy’s key variables

and altering the allocation of resources between sectors.

An increase in ξ (which raises fees, δ). As shown in Table 4, a 10% increase in ξ raises crypto-

currency transaction costs, leading to a decline in capital stock (Kss), labor in the goods sector

(Ly
ss), and consumption of both money (cmss) and crypto-purchased goods (cxss) across all σ levels,

except for a small increase in cmss when σ = 1.5 as consumers shift away from crypto-purchased

goods. Real wages remain unchanged, but the crypto-fee (ϕ) and real exchange rate (q) rise,

reflecting higher transaction costs. Utility falls due to reduced consumption, with the largest

impact seen when fiat money and crypto-currency are substitutes (σ = 1.5).
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Table 3: Shock analysis (10% increase in the money supply).

Kss Ly
ss cmss cxss

r
p

w
p ϕ q u (cmt , cxt )

σ = 0.5 40.0990↓ 0.9219 1.1639↓ 1.6952↓ 0.0214↑ 2.1709↓ 0.0476 1.050 1.4910↓
σ = 1 39.6463↓ 0.9115 0.9057↓ 1.9211↓ 0.0214↑ 2.1709↓ 0.0476 1.050 -

σ = 1.5 39.2585↓ 0.9026 0.6845↓ 2.1146↓ 0.0214↑ 2.1709↓ 0.0476 1.050 1.5725↓
Note: The upward (downward) arrow indicates an increase (decrease) relative to the benchmark values

reported in Table 2. The absence of an arrow signifies no change compared to the benchmark.

Table 4: Shock analysis (10% increase in the fee structure).

Kss Ly
ss cmss cxss

r
p

w
p ϕ q u (cmt , cxt )

σ = 0.5 40.0350↓ 0.9149↓ 1.1603↓ 1.6822↓ 0.0213 2.1748 0.0521↑ 1.055↑ 1.4822↓
σ = 1 39.5470↓ 0.9038↓ 0.9051↓ 1.9027↓ 0.0213 2.1748 0.0521↑ 1.0550↑ -

σ = 1.5 39.1285↓ 0.8942↓ 0.6863↑ 2.0918↓ 0.0213 2.1748 0.0521↑ 1.055↑ 1.5603↓
Note: The upward (downward) arrow indicates an increase (decrease) relative to the benchmark values

reported in Table 2. The absence of an arrow signifies no change compared to the benchmark.

A reduction in θ (higher taste for crypto-purchased goods). A 10% decrease in θ leads to an

increase in consumption of crypto goods (cxss) across all σ levels in Table 5. This shift reduces

the consumption of money-purchased goods (cmss) and decreases both capital stock (Kss) and labor

allocated to the goods sector (Ly
ss). Utility (u(cmt , cxt )) increases due to the higher consumption

of crypto goods, with the most pronounced increase seen when money and crypto are substitutes

(σ = 1.5). Real wages (wp ) and the crypto fee (ϕ) remain unchanged, while the rate of return on

capital ( rp) experiences a slight decrease when σ = 1.5. This suggests that a stronger preference for

crypto-purchased goods and a reallocation of resources towards crypto-based consumption, affecting

production and investment patterns in the economy.

Table 5: Shock analysis: 10% decrease in θ (higher taste for crypto-purchased goods).

Kss Ly
ss cmss cxss

r
p

w
p ϕ q u (cmt , cxt )

σ = 0.5 40.2477↓ 0.9198↓ 1.1129↓ 1.7447↑ 0.0213 2.1748 0.0476 1.050 1.5128↑
σ = 1 39.7244↓ 0.9078↓ 0.8156↓ 2.0048↑ 0.0213 2.1748 0.0476 1.050 -

σ = 1.5 39.3006↓ 0.8981↓ 0.5749↓ 2.2154↑ 0.0213↓ 2.1748 0.0476 1.050 1.6270↑
Note: The upward (downward) arrow indicates an increase (decrease) relative to the benchmark values

reported in Table 2. The absence of an arrow signifies no change compared to the benchmark.
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8.4 BGP equilbrium: full derivation

As shown in subsection 6.1, final output in the AK model equals Yt = AKt and the real rental

rate for capital is rt/Pt = αA. From (41), labor demand in the final sector implies a real wage

wt/Pt = (1− α) · A · (Kt/L
y
t ), whereas, irrespective of the final sector’s technology, labor demand

in the exchange platform is given by (78). Therefore, wage equalization in the labor market implies

Ly
t

1− Ly
t

=
A (1− α)

2ξ
· Kt

cxt
. (88)

Since the crypto-fee rate δt = ξ/ (1 + ξ) is constant over time and the monetary authority is assumed

to follow a constant money growth rule Ṁt/Mt = gM , the AK model admits a permanent BGP

equilibrium such that the economy exhibits a constant growth rate from time zero onwards. This

implies that, differently from the neoclassical case where we focus on steady-state results – the AK

model allows us to build a reduced equilibrium system determining the entire time path of the

economy. The key relationship to derive is the equilibrium ratio of consumption to capital which,

in this class of models, is a jump variable that settles in its only permanent feasible steady state

from time zero onwards. From Yt = AKt and (8), the growth rate of capital obeys

K̇t

Kt
= A− cmt + cxt

Kt
= A− Ct

Kt
. (89)

From (65), the growth rate of consumption equals

Ċt

Ct
=

√
(1 + πt)

2 + 4αA− (1 + πt)

2
− ρ ≡ gC . (90)

The above expressions imply that, defining χt ≡ Ct/Kt, the growth rate of the consumption-capital

ratio obeys
χ̇t

χt
= gC −A+ χt, (91)

which is a dynamically unstable equation whose uniques steady state is

χ∗ = A− gC = A+ ρ−

√
(1 + πt)

2 + 4αA− (1 + πt)

2
. (92)

It can be shown by standard arguments that setting χt = χ∗ in each t ∈ [0,∞) is the only

solution that is compatible with (i) the conditions for intertemporal utility maximization and with

(ii) satisfying the capital accumulation constraint along the entire time path.3 Therefore, the

BGP equilibrium is characterized by a constant consumption-capital ratio from time zero onwards,

χt = χ∗ in each t ∈ [0,∞).

3The intuition is that choosing a different consumption-capital ratio at time zero, χ0 ≷ χ∗, would generate –

from equation (91) – explosive dynamics in χt which would violate either the consumers’ transversality conditions

in the long run (due to overaccumulation of capital) or the aggregate resource constraint (89) in finite time (due to

overconsumption).
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Using (11) and (74), the ratio between money-purchased and crypto-purchased goods (57) equals

cmt
cxt

=

[
θ (1 + 2ξ)

1− θ

]σ
. (93)

Equation (92) allows us to the determine the ratio between money-purchased consumption and

capital. Since aggregate consumption equals

Ct = cmt + cxt = cmt ·
{
1 +

[
1− θ

θ (1 + 2ξ)

]σ}
, (94)

the ratio χm
t ≡ cmt /Kt will be constant over time and equal to

χm
t =

cmt
Kt

=
1

1 +
[

1−θ
θ(1+2ξ)

]σ · Ct

Kt
=

1

1 +
[

1−θ
θ(1+2ξ)

]σ · χ∗,

that is,

χm =
A− gC

1 +
[

1−θ
θ(1+2ξ)

]σ . (95)

Expression (95) determines the variable χm that we have previously introduced in equation (68)

and confirms that it is constant over time. Similarly, letting σ = 1, expression (95) determines the

variable χm
CD that we have previously introduced in equation (47). We have now all the elements

to build a reduced system for the BGP equilibrium in the AK model.

Reduced system (BGP equilibrium). The following reduced equilibrium system allows us

to determine four key endogenous variables – namely, the inflation rate, the balanced growth rate

(of real consumption, output and capital), the consumption-capital ratio, and employment in the

final sector (and, residually, in the exchange platform) – along the balanced growth path of the AK

model:

gM =

√
(1 + π)2 + 4αA− (1− π)

2
− ρ (96)

gC = gM − π (97)

χm =
A− gC

1 +
[

1−θ
θ(1+2ξ)

]σ (98)

Ly

1− Ly
=

A (1− α)

2ξ
· 1

χm
·
[
θ (1 + 2ξ)

1− θ

]σ
(99)

Equation (96) follows immediately from (49) and determines the inflation rate π given the monetary

growth rate gM set by the authority. Equation (97) follows immediately from (48) and determines

the BGP growth rate gC . Equation (98) follows from the above analysis – eq.(95) – and determines

the ratio of consumption in money-purchased goods to physical capital. Equation (99) follows from

substituting (92) and (95) into the condition for wage equalization in the labor market (88), and
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determines employment in the final sector, Ly, as well as employment in the exchange platform,

1− Ly.

Since the economy exhibits a BGP equilibrium from time zero onwards, the determination of(
π, gC , χm, Ly

)
in the reduced system allows us to calculate the whole time paths of the main

variables of interest according to the following equations: capital, output and consumption are

given by

Kt = K0 · egC ·t, (100)

Yt = AKt = K0 · egC ·t, (101)

Ct = (Ct/Kt) ·Kt = χ∗ ·Kt =
(
A− gC

)
·K0 · egC ·t, (102)

whereas the real wage and price level are given by4

wt

Pt
= (1− α) ·A · (1/Ly) ·K0 · egC ·t (103)

Pt =
1

gC + χm
[
1 +

(
1−θ
θ

)σ · (1 + 2ξ)1−σ
] · M0

K0
· eπt (104)

where K0 is exogenously given and M0 is exogenously set by the authority.

8.5 BGP equilbrium: numerical analysis

The following subsection presents a numerical illustration of the balanced growth path for different

values of the elasticity of substitution – covering the cases of strict complementarity, strict substi-

tutability, and Cobb-Douglas preferences – and evaluates, for each of these three basline scenarios,

the effects of exogenous changes in the growth rate of nominal money, in the crypto-fee rate (due to

an exogenous rise in ξ), and in the taste parameter θ. First, we report the fixed parameter values

and the results for the baseline scenrio in Table 6 and Table 7.

Table 6: Parameter values.

Preferences Technology Monetary policy rule

θ = 0.3 α = 0.3 gM = 0.045

ρ = 0.02 ξ = 0.05

A = 0.16

8.6 BGP shock analysis

An increase in gM (faster monetary growth). A 10% increase in the money supply (gM ), as reported

in Table 8, leads to a rise in inflation (π) across all cases, regardless of the elasticity of substitution

4The time path of the real wage in (103) follows straightforwardly from equation (41). The time path of the

money price in (104) follows from equation (70) after substituting the equilibrium fee rate (74).
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Table 7: Benchmark results.

π gC χm Ly cmt
cxt

σ = 0.5 0.0199 0.0251 0.0549 0.9333 0.6866

σ = 1 0.0199 0.0251 0.0432 0.9243 0.4714

σ = 1.5 0.0199 0.0251 0.0330 0.9166 0.3237

(σ). As expected, the real consumption growth rate (gC) decreases, indicating the negative effect of

higher inflation on real consumption. The ratio of money-purchased goods to capital (χm) increases,

suggesting a shift towards more money-purchased goods as inflation rises. However, this increase

is more pronounced when money and crypto are complements (σ = 0.5) and less so when they

are substitutes (σ = 1.5). Labor allocation to the goods production sector (Ly) declines slightly

as money becomes more abundant, reflecting a reallocation of labor resources. Lastly, the ratio

of money-purchased to crypto-purchased goods (cmt /cxt ) falls as σ increases, implying that when

money and crypto-currency are substitutes, consumers favor crypto-purchased goods more heavily

after the shock.

Table 8: Shock Analysis: 10% Increase in the Money Supply

π gC χm Ly cmt
cxt

σ = 0.5 0.0246↑ 0.0249↓ 0.0550↑ 0.9332↓ 0.6866

σ = 1 0.0246↑ 0.0249↓ 0.0433↑ 0.9242↓ 0.4714

σ = 1.5 0.0246↑ 0.0249↓ 0.0330↑ 0.9165↓ 0.3237

Note: The upward (downward) arrow indicates an in-

crease (decrease) relative to the benchmark values reported

in Table 7. The absence of an arrow signifies no change

compared to the benchmark.

An increase in ξ (which raises fees, δ). In Table 9, a 10% increase in the fee structure (ξ) leads

to no change in inflation (π) and the consumption growth rate (gC) across all cases, regardless

of the elasticity of substitution (σ). However, the ratio of money-purchased goods to capital

(χm) increases, indicating a shift towards money-purchased goods as the cost of crypto-related

transactions rises. This increase in χm is larger when money and crypto are complements (σ = 0.5)

and less so when they are substitutes (σ = 1.5). Labor allocation to the goods production sector

(Ly) declines, reflecting a reduction in the productive sector as crypto becomes more costly to

use. The ratio of money-purchased to crypto-purchased goods (cmt /cxt ) rises, suggesting that higher

fees for crypto transactions push consumers to favor money-purchased goods, with this effect being

strongest when the two goods are more substitutable. This analysis highlights the role of transaction

costs in shifting consumer preferences between money and crypto, and its impact on real variables

in the BGP framework.
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Table 9: Shock Analysis: 10% increase in the fee structure

π gC χm Ly cmt
cxt

σ = 0.5 0.0199 0.0251 0.0551↑ 0.9273↓ 0.6897↑
σ = 1 0.0199 0.0251 0.0435↑ 0.9176↓ 0.4757↑
σ = 1.5 0.0199 0.0251 0.0333↑ 0.9093↓ 0.3281↑

Note: The upward (downward) arrow indicates an in-

crease (decrease) relative to the benchmark values reported

in Table 7. The absence of an arrow signifies no change

compared to the benchmark.

A reduction in θ (higher taste for crypto-purchased goods). As reported in Table 10, a 10% reduction

in θ results in no change in inflation (π) and consumption growth (gC) across all values of the elas-

ticity of substitution (σ). However, the ratio of money-purchased goods to capital (χm) decreases,

indicating a shift toward crypto-purchased goods. This reduction in χm is more pronounced when

the two goods are complements (σ = 0.5) and less significant when they are substitutes (σ = 1.5).

Labor allocation to the goods production sector (Ly) also decreases, reflecting a reduced need

for money-purchased goods as the economy adapts to the higher preference for crypto-currency

transactions. The ratio of money-purchased to crypto-purchased goods (cmt /cxt ) decreases sharply,

showing that consumers are opting more for crypto-purchased goods, with the largest decline oc-

curring when the goods are more substitutable (σ = 1.5). This shift highlights the influence of

consumer preferences on the allocation of resources in the economy.

Table 10: Shock analysis: 10% decrease in θ

π gC χm Ly cmt
cxt

σ = 0.5 0.0199 0.0251 0.0525↓ 0.9315↓ 0.6378↓
σ = 1 0.0199 0.0251 0.0390↓ 0.9211↓ 0.4068↓
σ = 1.5 0.0199 0.0251 0.0278↓ 0.9127↓ 0.2595↓

Note: The upward (downward) arrow indicates an in-

crease (decrease) relative to the benchmark values reported

in Table 7. The absence of an arrow signifies no change

compared to the benchmark.

Figure 1 demonstrates that capital, output, and consumption grow steadily over time but remain

largely unaffected by variations in the elasticity of substitution (σ = 0.5, σ = 1, and σ = 1.5). This

suggests that the broader growth trajectory of the economy is driven by technology rather than

consumer preferences between money-purchased and crypto-purchased goods. However, real wages

are highly sensitive to changes in σ, with greater substitutability (σ = 1.5) leading to faster wage

growth due to more efficient labor allocation. In contrast, when goods are more complementary

(σ = 0.5), wage growth is slower. The price level shows only slight variation, rising more slowly with
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greater substitutability, reflecting the lower cost pressures from crypto-purchased goods. Overall,

the impact of elasticity is most visible in real wages, while price levels and aggregate economic

variables remain relatively stable.

Figure 1: Evolution of the key model variables along the BGP

9 Conclusion

This paper explores how the coexistence of fiat money and crypto-currencies shapes economic

outcomes in a dynamic setting. We highlight that crypto-currencies disrupt resource allocation,

particularly by diverting labor from traditional sectors and adding transaction costs, amplifying

the non-neutrality of money. While key growth indicators like capital and output remain relatively

stable, shifts in labor allocation and real wages are more responsive to changes in crypto fees and
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consumer preferences. An important improvement on this work would be to incorporate the idea of

pecuniary and non-pecuniary features in the dynamic framework. Up until now, we have assumed

that crypto goods are needed. Although the consumptio ratio is determined endogenously, future

research could take a similar approach to the static model to determine a threshold good where

consumers are indifferent between payment methods. Moreover, extending the model to include

Central Bank Digital Currencies (CBDCs) would provide a valuable avenue for studying interac-

tions among fiat money, crypto-currencies, and CBDCs, along with their influence on consumer

preferences. This extension would greatly enhance the current analysis.
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