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Abstract

This research investigates whether crypto-currency returns correlate with expected

uncertainty related to the global economy or other risky markets. In a first attempt,

we use the copula framework to estimate the dependence magnitude between returns

on the crypto-currency market, the interest rate spread, the breakeven inflation and

the volatility index from the S&P500 options (VIX). Our results show that uncertainty

information about future policy and the state of the economy contained in the interest

rate spread bears no importance in crypto-currency price fluctuations. However, we

find a pattern, although relatively small, for high estimated crypto-currency returns

volatility to overlap with low VIX values. On another level, we find evidence that

dynamic time series models can improve our understanding of price fluctuations on

the crypto-currency market. We estimate a 5.6 percentage points increase of today’s

log-returns on the crypto-currency market for each one percentage point increase of

yesterday’s breakeven inflation. The effect is instantaneous and about 12 percentage

points in recent time periods (2020-2022).

Keywords: Crypto-currency; government bonds; volatility modelling; copula

1 Introduction

The crypto-currency’s secondary market rise is a singular case study in the financial literature.

The market has gone from 0 in valuation in January 2010 to more than 2 trillion United States

∗This document is an early draft of the first chapter of my PhD thesis.
†School of Economics, University of East Anglia, NR4 7TJ Norwich (United Kingdom). Email ad-
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Dollar (USD) in March 2022. The unconventionally high returns on crypto-currencies is a possible

reason for this expansion. From 2017 to 2021, the annual returns on Bitcoin (BTC) averaged 76%.

In contrast, the average annual returns on the world’s largest equity index, the S&P500, sat at

around 15%. The exceedingly high returns coupled with low entry barriers have turned crypto-

currencies into an attractive class of assets for retail investors. More recently, the crypto-currency

market (CM) activity has also been amplified with an influx of institutional investments. As a

consequence, this nascent market has been subjected to important scrutiny work from regulators

and academics alike.

A major impediment with crypto-currencies is the unstable fluctuation around the mean re-

turns. The average annual volatility of the BTC, proxied by the standard deviation of the returns

distribution, oscillated around 77% between 2012 and 2021. We evaluated the average volatility

of the S&P500 at 20% over the same time period. So, the BTC price is approximately four times

more volatile than the S&P500 index. By traditional standards, the crypto-currency trading is an

extremely high-risk financial activity.

Are there financial and economic drivers to explain price fluctuations on the CM? A strand

of the emerging literature identifies interest rates on government bonds as a major candidate to

explain crypto-currency prices (Karau 2021, Aboura 2022). The same argument is also prevalent in

economically inclined newspapers (The Economist 2022, Financial Times 2022). In a nutshell, the

reasoning supposes that higher interest rates on government bonds crowd capital out of the CM.

Similarly, low interest rates on government securities increase both investors’ risk-taking attitude

and the attractiveness of the CM. The latter reasoning is similar to the risk-shifting mechanism

studied in Rajan (2006) and Borio & Zhu (2012). Put differently, the explanation posits a trade-

off between holding crypto-currencies and government bonds, which is a variation of the classical

trade-off in portfolio construction with risky and risk-free assets.

Our research addresses two levels of inconsistencies in the current literature. On the one hand, it

is likely the interest rate channel identified in the literature arises from an inadequate interpretation.

For instance, Aboura (2022) argues that the March 2020 interest rate cut in the US was instrumental

to the subsequent crypto-currency bullish run. However, the same period witnessed the inception

of multiple fiscal transfer packages directed to households and small enterprises across the globe.

Higher household savings, driven in part by the pandemic-related restrictions, may have instead

dictated retail investors’ preference for crypto-currencies 1. On the other hand, a crypto-currency

price response to interest rate change does not lead to clear-cut conclusions. Publications in this area

often report incoherent crypto-currency price reactions, which depends on various policy set-ups

and the country considered for the object of the analysis (Karau 2021, Aboura 2022). Consequently,

these contrasts lessen the relevance of these studies in practical decision-making related to the CM.

Our study re-examines the dependence between price variation on the CM and interest rate

1See Dossche et al. (2021) for an overview on household savings increase in the euro area during the
pandemic and the allocation of a sizable part of them to financial investments.
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movements. Our focus is on the direction and the steepness of the yield curve, meaning the sign and

the magnitude of the curve slope. The latter accounts for both intertemporal change in interest rates

and expectations about market conditions, which is the basis of the expectations theory. Implicitly,

we are testing for whether the direction of the yield curve is informative for returns fluctuation.

On another level, we also look at the dependence between the CM and other risky markets. For

the risky market extension, we use the Volatility Index (VIX) as a measure of expected volatility.

Similar to the government bond slope reasoning, the VIX incorporates uncertainty information

about 500 leading firms in the US economy (Bekaert et al. 2013). Our last bivariate dependence

analysis involves the price variation on the CM and the US 5-year breakeven inflation. As a

measure of expected inflation, the breakeven variable is important to gauge how investors align

their decisions with future market conditions. The existence of fluctuations synchronization or

asymmetry between price movements on the CM and the variables described in this section would

be a starting point to rationalize investments decisions regarding the CM.

We use the copula framework to estimate the dependence between returns on the CM and

the three other variables, meaning the yield curve slope or the interest rate spread, the VIX and

the breakeven inflation. The copula is an important approach to study the dependence between

continuous random variables when the pearson correlation and related techniques break down.

Patton (2006) gives an illustration of the copula technique importance to analyze the case of an

asymmetric relationship between exchange rates. Other econometric use of the copula method in

finance and economics is described in Patton (2006). In this paper, our main objective is to measure

the co-movement between price fluctuations on the CM and the variables mentioned above. The

technique also allows the decomposition and visualization of the dependence between the variables

in terms of extreme events, labelled as upper and lower tail dependence in the copula literature.

For example, a tendency for high extreme returns on the CM to cluster with high extreme yield

slope values would be a situation of an upper tail dependence, with the converse explanation for

the lower tail dependence.

We illustrate the existence of extreme events between log-returns on the CM and the slope of the

US yield curve in Figure 1 2. At first, the two observed series are plotted against each other. Then,

we extract the mean and the correlation estimate of the observed variables to simulate bivariate

normal and student’s t distributions that would likely arise from such estimates. Figure 1 shows a

clear departure from normality and the existence of extreme events that are best captured by the

bivariate student’s t. Using the copula technique, we provide estimates of the magnitude and the

statistical significance of these extreme events.

The dataset used in this research covers the period 02 January 2012 to 31 March 2022. The

returns on the CM are proxied by an index aggregating BTC and Ether (ETH). The market

capitalization of these two cryptocurrencies represents more than 60% of the CM for the first

2The conclusion would be similar for a comparison between the log-returns on the CM and the two other
variables.
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Figure 1: Log-returns on the CM and the yield slope variation
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Notes: This figure assesses the departure from the normality assumption in the log-returns on the CM and
the first difference of the slope (interest rate spread) series. In level, the slope series is not stationary. We
mostly work with the differenced series in the remainder of the paper.

quarter of 2022 (Cryptocompare 2022). Regarding the yield spread, it is computed for the US

government bond market. Not only the latter is the largest of such markets, but also US treasuries

are held by investors across the globe. The reasoning underlying the choice of the VIX and the

5-year breakeven inflation is also driven by the preeminence of the US financial system. Implicitly,

the US yield slope, the VIX and the breakeven are the best candidates to gauge investors’ possible

trade-off with the CM.

Our first set of results shows no evidence of dependence between the CM and the government

bond market. In particular, there is no revealed pattern for returns on the CM to cluster with

a particular quantile of the interest rate spread. We illustrate this result through the plot of the

marginal distributions of both variables in Figure 4. The low estimates of both the dependence

and the tail parameters in Table 4 support the graphical representation of the two variables. So,

investors on the CM give no weigh to expected policy paths and uncertainty about economic cycles

in their decisions related to the CM as measured by the yield curve slope.

The dependence between volatility on the CM and the VIX exhibits a more complex picture.

We find evidence for extreme low VIX values (5% quantile) to be correlated with high predicted

volatility (90% quantile) on the CM (see Figure 5). We transform the VIX variable (100 minus

the VIX) and express this observation in terms of an upper tail dependence structure, which has

a known mathematical form in the copula theory. The likelihood of observing the cluster of these

extreme events is estimated at 4.6% and 7.8% for the Gumbel-Hougaard and the Joe copulas

respectively. Given the VIX is a 1-month ahead estimate, we generate a similar CM volatility

measure and re-evaluate the tail dependence probability. The upper tail dependence estimates
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jump to 8% and 12%. Based on the last results, market participants should expect overlapping

between low VIX and high CM volatility values every 13 and 9 days respectively, depending on

which of the two copula families is considered.

We also find weak and non statistically significant estimates for the copula modelling exercise

between the log-returns on the CM and the breakeven inflation. Overall, the results of the copula

technique remains coherent in presence of possible nominal and real economic drivers of prices on

the CM.

To ensure the validity of our results, we conduct various robustness checks in subsection 4.6. The

first step involves a sub-sample analysis ranging from 1 January 2020 to 30 March 2022. This period

witnessed the arrival of institutional investors and a relative recognition of CM activities from reg-

ulators. Surprisingly, our conclusions for the sub-sample also find no co-movement between returns

on the CM, the interest rate spread and the breakeven inflation. The consistency of the results

would mean that the arrival of smart money does not enhance the connection between cryptocur-

rencies and the wider macroeconomic environment. We obtain similar results when transforming

the variables into weekly observations in order to control for possible non-synchronous closing times

problem that has been documented to be a major setback in the the analysis of crypto-currencies

(see Alexander & Dakos (2020)).

Slow-updating of investors’ risk perception with information in the interest rate spread may be

an important factor in the absence of dependence found in this research. In this scenario, models

that can capture the delayed response of returns on the CM to change in the other variables can

be insightful for the present analysis. We build a simple Autoregressive Distribute Lag (ADL)

model to elucidate this point, where the interest rate spread and the breakeven inflation enter the

equation as covariates. Again, the interest rate spread has no predictive power on the returns on

the CM. On the contrary, a 1 percentage point increase in today’s expected inflation corresponds

to a 5.6 points increase in tomorrow’s returns on the CM. This marginal effect is stronger (12%)

and contemporaneous in the sub-sample 2020-2022.

In terms of economic knowledge, we provide evidence that crypto-currencies are weakly linked

to some financial fundamentals, in particular uncertainty information contained in the interest rate

spread and the VIX. Unlike the copula technique, our simple time series model uncovers a positively

significant relationship between the breakeven inflation and the log-returns on the CM. The high

proportion of ties in the interest rate spread (84%) and the breakeven inflation (94%) is a potential

source of problems for the copula estimates. This issue may undermine the continuity assumption

made by the Sklar’s theorem on the marginal distribution of the mentioned series and affect the

reliability of the copula estimates (see Hofert et al. (2019)). Going forward, a combination of copula

and dynamic time series would be an efficient approach to explain price movements on the CM.
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2 Related Literature

A starting point of this investigation is the literature on rational expectations and the term

structure of interest rates. In particular, our contribution extends the long standing debate of the

linkages between interest rates and risky assets into the CM literature. This work’s methodology

follows the approach in Estrella & Mishkin (1996) for the spread choice. In terms of early findings,

numerous publications argue the existence of a significant link between the term structure of interest

rates and economic activity (see e.g., Mishkin 1990, Estrella & Hardouvelis 1991, Ang et al. 2006).

Work by Zhou (1996) and Boudoukh et al. (1997) also depict an important relation between interest

rates on US government securities and equity returns. However, other work in the field cast doubt

on the predictive power and the use of the yield slope in predicting future economic trends (see

e.g., Shiller et al. 1983, Campbell & Shiller 1991). Our analysis applies the copula framework to

both the entire sample and sub-samples of the dataset to detect possible interlinkages between the

spread (the VIX and the breakeven inflation also) and returns on the CM. As a statistical tool, the

copula technique lays out a straightforward approach to test this relationship while keeping the

core theoretical underpinnings of the expectations theory intact.

This research adds to the empirical literature researching the linkages between crypto assets,

economic policies and the traditional class of financial securities. Earlier studies have found signif-

icant impacts of monetary policy decisions on cryptocurrency price valuations. Focusing on BTC

alone, Karau (2021) uncovers a strong connection between monetary policy stances and the BTC

price. Corbet et al. (2020) also observe similar links between monetary decisions and cryptocurren-

cies. On a different approach, but closely related to our analysis, Akyildirim et al. (2020) pinpoint

the existence of a correlation between cryptocurrencies and uncertainty on the stock markets, prox-

ied by implied volatility measures. Our analysis offers an integrated investigation of the dependence

between the CM, the risky and the risk-free market. Compared to the findings reported in this

paragraph, our copula analysis finds no substantial relationship between the CM, the interest rate

spread, the VIX and the breakeven inflation. The ADL model presents a nuanced picture with

strong and statistically significant effects of the breakeven inflation on the log-returns on the CM.

In a nutshell, these results make a case for the use of dynamic models (models with lags) in the

analysis of crypto prices.

From a broader perspective, our research offers practical insights into price movements on

the CM. A pioneered thinking on this question is from Böhme et al. (2015), who see the bitcoin

money growth model as an inherent cause for the shallow market issue. Given the widespread use

of cryptocurrencies for financial trading purposes, publications on price fluctuations on the CM

have expanded largely over the recent years. Regarding the stylized facts, Zhang et al. (2018)

analyse the returns of 8 leading cryptocurrencies and detect the existence of heavy tails, a pattern

towards long memory, and a powerful feature of volatility clustering. Similarly, Hu et al. (2019)

find a significant dissimilarity in the returns distribution for a sample of over 200 virtual currencies,
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which would probably indicate some restraints in generalising findings for a class of cryptocurrencies

to the entire CM. These well-established statistical facts are supported in numerous volatility

modelling publications (see also Bariviera 2017, Jiang et al. 2018). Our research finds the existence

of persistent conditional volatility on the CM and shared properties with traditional financial time

series. Unlike Böhme et al. (2015), we have not identified the monetary structure of BTC and ETH

to be a driving factor in their price variations.

3 Data and Summary Statistics

3.1 Data construction methodology

We obtain statistics on cryptocurrencies, the spread on US government instruments, and the

VIX from Bloomberg and the Federal Reserve Bank of Saint Louis respectively. BTC and ETH

prices are observed daily at 5:00 PM, Eastern Time. The Exchange Rate Index (ERI) for the CM is

made up BTC and ETH. As of 1 April 2022, BTC and ETH account for 61% of the overall market

capitalization of the CM (see CoinMarketCap 2022). So, these two cryptocurrencies are actually

representative of the crypto exchange activities.

Observations for BTC/USD are available from 02 January 2012 to 31 March 2022. However,

data for ETH/USD are accessible from 08 February 2018 to 31 March 2022. To compute an index

of the two rates at a given time t, the Dow Jones methodology is implemented as follows
P1t+P2t

n ,

where P1t, P2t and n stand for the exchange rate of BTC, the exchange rate of ETH and the number

of price series respectively. From 02 January 2012 to 07 February 2018, the ERI is simply equal

to the price of BTC in USD. Although ETH trading activities went back to 2015, the Bloomberg

ETH price series starts in February 2018. Noise affecting ETH price in the early trading days

might be a reason for this choice from Bloomberg. To smooth the introduction of ETH in the

index calculation, a divisor is used to compute the ERI from 08 February 2018 till the end of the

series. The divisor is calculated as the summation of the prices divided by the previous day index

(Pt1+Pt2
ERIt−1

). Instead of the number of cryptocurrencies, the sum of the two cryptocurrency prices is

divided by the divisor in the modified formula (ERIt = P1t+P2t
Divisor ). We subsequently refer to the

variation of the index as the cryptocurrency returns or simply X1t in the next section.

The study relies on the interest rate spread on US government bonds to offer a comprehensive

analysis of the CM. The spread used in this work is the difference between the interest rates on

the 10-year treasury note and the 3-month treasury bill. Estrella & Mishkin (1996) provide a

thorough empirical analysis of the strength of the interest rate spread considered here in predicting

macroeconomic cycles. More specifically, the conclusion of their investigation shows a relatively

important long-term prediction capability of the interest rate spread between the 10-year note and

the 3-month bill. We use a similar motivation to study how price movements on the CM can be

approximated by information contained in the interest rate spread. Mathematically, The yield on
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a zero-coupon government bond with a 1 US dollar face value is defined as yt =
(

1
P0(0,t)

) 1
t − 1,

with P0(0, t) describing the price of the bond quoted (and purchased) at time 0 and expiring in t

periods. Formally, our spread variable is defined as X2t = y10 − y0.25.

The empirical section also encompasses two uncertainty and forward measures. First, the VIX

measures the expected volatility regarding the S&P500. Second, the 5-year breakeven inflation gives

the market expectation of the average inflation for a 5-year horizon. The co-movement analysis

of these variable with returns on the CM would give us valuable information regarding market

participants on the CM.

Overall, the dataset at hand contains 2674 observations. The latter are sampled on business

days only. Regarding missing values, the identified cases are filled up according to the Kalman

filter approach. As opposed to linear interpolation or related techniques, the latter is preferred

due to its ability to replace missing values while preserving the existing trend or seasonal pattern

observed in the series.

In the following sections, we refer to returns on the CM, the yield slope, the VIX, the 5-year

breakeven inflation and any transformation arising from them as X1t, X2t, X3t and X4t respectively.

3.2 Summary Statistics

Table 1 reports descriptive statistics of the main variables used in this research. We compute daily

returns on the CM as X1t = log( ERIt
ERIt−1

). Returns on the CM are left-skewed and characterized by

an excess kurtosis. Average returns for the sample period oscillate around 0.003 for the CM. Note

that the log-returns distribution range from -0.6 to 0.52. X1t range conveys evidence of extreme

fluctuations in cryptocurrency trading activities. In concrete terms, daily log-returns on the CM

have been alternating between -60% and 52% over the past 10 years. In contrast, the first difference

of the interest rate spread (slope of the yield curve), denoted X2t, has shown less variation. The

average value is close to 0 with a skewness of 0.47. Overall, the slope of the yield curve has been

mostly positive for US government bonds with maturities set for 3 months and 10 years.

Table 1: Summary statistics of the main variables

Variable N Mean Std. Dev. Min Skewness Kurtosis Max

X1t 2,673 0.003 0.053 −0.60 −0.60 25 0.52
X2t 2,673 5.59×10−7 0.0004 −0.002 0.47 6.25 0.003
X3t 2,673 17.27 6.85 9.14 3.18 20.65 82.69
X4t 2,673 0.00001 0.0004 -0.003 -0.0034 0.0022 0.002

Notes: This table reports basic statistics for log-returns on the CM, change in the spread series, and the
VIX.

The log of ERI shows an increasing trend throughout the entire sample. Compared to 02

January 2012, the index was multiplied by more than 8000 on 31 March 2022. As evidenced by the
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top-right panel of Figure 2, volatility clustering has been persistent for the period covered in this

research. The two most important volatility bursts in the log-returns of ERI occurred around April

and December 2013. The first one emerged from news of liquidity issues faced by two pioneered

crypto exchanges (BitInstant and Mt. Gox) to meet their obligations towards their investors. As

a result, the price of bitcoin nosedived 60% on 11 April 2013 before realizing a rebound of 32%

seven days later. The second corresponded to the warning issued by the People’s Bank of China

on 05 December 2013 against the use of BTC in financial transactions. BTC price declined by 58%

following the announcement and regained much of its value on 09 December 2013 (52% ). It is

worth mentioning that the introduction of ETH in the sample (purple vertical line) does not lead

to any abnormal change in the fluctuations observed on the CM. The observation also goes for the

vertical red line, which indicates the true inception date of ETH on 30 July 2015.

In the volatility modelling process, the emphasis is on the change of the spread series, meaning

the first difference (X2t). In fact, the spread series, the second row of Figure 2, is non-stationary

in level 3. So, the change in the spread, which is stationary, is important for the conditional copula

modelling process. The latter uses the Generalized Autoreregressive Conditional Heteroskedastic-

ity (GARCH) modelling framework as an input to compute dependence parameters, making the

stationarity of the margins a critical element. Furthermore, the stationarity of the margins are

important to ensure the application of the copula diagnostic tests (Hofert et al. 2019). In terms

of economic interpretation, X2t captures similar information as the level series, meaning investors

attitude towards future change in the economy. However, evidence of volatility clustering seems to

be less dominant in X2t in comparison to X1t. Aside a few episodes of peaks and drops, fluctuations

in X2t are constrained within -0.1% and 0.1%

Inspecting the logarithmic of ERI and the spread in level shows a divergent trend between

2014 and 2020. As the spread between long-term and short-term interest rates was shrinking,

cryptocurrencies prices were becoming more important. Yet, this makes a compelling case for the

use of the first difference of the spread series. Successive reductions of the spread between the two

interest rates turn into negative values in the first difference transformation. The negative signs in

X2t will come in handy when studying co-movement with X1t. So, existence of negative values for

both X1t and X2t at comparable time periods would be important aspects for the tail dependence

in the bivariate copula analysis.

The last two variables of Table 1 and Figure 2 are the VIX and the breakeven inflation. The

most important observation is the synchronization of volatility movements with returns on the

CM around early 2021. We offer a sub-sample analysis in the next section that sheds light on the

relative co-movement detected in these plots.

3See the Autocorrelation Function (ACF) in Figure 9 of the appendix for an analysis of each series’
departure from the stationarity assumption
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Figure 2: Plot of the variables in level and their first difference transformations
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Notes: This figure presents the four main variables of the study. The red line illustrates the effective issuance
date of ETH (30 July 2015), whereas the purple one corresponds to the introduction period of ETH in the
present sample (08 February 2018).

4 Model Specification and Results

4.1 Theoretical Motivation

As explained in the introduction, this study is built on the assumption of a trade-off between cryp-

tocurrencies and traditional financial instruments. We start with the intuition of a possible negative

correlation between cryptocurrencies and the latter class of assets. The reasoning underlying the

relationship hinges on the expectations theory. For instance, a positive spread or an upward sloping

curve is interpreted as a signal of future short-term interest rate hikes or economic expansion. We

would expect investors on the CM to capture these signals of possible higher rewards from the

wider financial market and opt for safer assets (bonds). The resulting outflow of capital from the

CM would induce a negative relationship between the two markets.

Our second focus is the VIX and the breakeven inflation. The two variables allow us to expand

our analysis of the CM beyond the classical trade-off between risky and risk-free assets. More

specifically, we look at the co-movement between the CM, the stock market and the expected
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inflation.

4.2 Overview of the Copula Theory

A bivariate copula modelling implies finding parameter estimates for each variable and the de-

pendence between them. The process starts with classical probability descriptions for continuous

random variables. For instance, a 2-dimension random vector X = (X1t, X2t) can be defined by

its joint Cumulative Distribution Function (CDF) noted H(x1, x2) = P (X1t ≤ x1, X2t ≤ x2) or in

terms of the respective margins F1(x1) = P (X1t ≤ x1) and F2(x2) = P (X2t ≤ x2).
4 The Sklar’s

theorem states that H(x1, x2) can be transformed into a function C, denoted copula, giving infor-

mation on both margins and the dependence between the two variables. Formally, Sklar’s theorem

stipulates that:

H(x1, x2) = C(F1(x1), F2(x2)), (x1, x2) ∈ R2. (1)

A useful transformation involves applying the integral transform theorem on the component of

each margin to make the arguments of H(.) uniformly distributed over the interval [0, 1]. So, the

copula function can now be written in terms of uniform components as:

C(u1, u2) = P (F1(Xt1) ≤ u1, F2(Xt2) ≤ u2). (2)

Statistical properties underlying the importance of copula are subject to a relatively dense

literature. One key element of the copula pertains to its role in detecting complex dependence

structure between random variables. For instance, contrary to a parametric dependence measure

such as the simple correlation that is restricted to two variables (which should be linearly linked),

copula can be generalized for any k-dimension vector of random variables. Hence, a k-dimension

copula will simple be written as

C(x1, x2..., xk) = (F1(x1), F2(x2), ..., Fk(xk)), (3)

which is a mapping of [0, 1]k → [0, 1].

So far, the account presented in this segment touches upon a basic definition of the copula

framework. However, numerous variants of copulas have been developed in the recent literature.

Table 2 presents the main copula families encounter in empirical work in finance.5 The level of

the θ parameter controls the dependence between the random variables at hand. In fact, a crucial

4The mathematical notation in this section and the following ones are based on Nelsen (2003), Mikosch
(2006) and Hofert et al. (2019).

5Elliptical copulas (Normal and Student’s t) and Archimedian copulas (Clayton, Gumbel, Joe and Frank)
are among the most used in financial studies. McNeil et al. (2015) and Hofert et al. (2019) explore in great
detail other techniques, such as copulas related to the extreme value theorem.
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difference among families of copulas lie in the notion of tail dependence. The latter is a condi-

tional probability that measures the likelihood of both X1 and X2 facing an extreme event (or lie

above/below a certain quantile denote q). After setting up a given quantile, the lower (τL) and

upper tail (τU ) are given by

τL = limq→0+ P [(Xt1<F
−1
1 (q)|Xt2<F

−1
2 (q)] = limq→0+

C(q,q)
q

τU = limq→1− P [(Xt1>F
−1
1 (q)|Xt2>F

−1
2 (q)] = limq→0+

1−2q+C(q,q)
q .

Table 2: Summary of some of the widely used copula families

Type Parameter (θ) C(u1, u2) τL τU

Normal [-1,1] Nθ(ϕ
−1(u1), ϕ

−1(u2)) 0 0

Student’s t [-1,1] tθ,v (t
−1
v (u1), t

−1
v (u2)) 2tv+1(w) 2tv+1(w)

Clayton (0,∞) (u−θ
1 + u−θ

2 − 1)
−1
θ 2

−1
θ 0

Frank (0,∞) 1
θ log

[
1 + (e−θu1−1)(e−θu2−1)

(e−θ−1)

]
0 0

Gumbel-Hougaard [1,∞) exp

[
−

((
logu1

)θ
+
(
logu2

)θ)1
θ
]

0 2− 2
1
θ

Joe [1,∞) 1-

[(
1-u1

)θ
+
(
1− u2

)θ − (
1− u1

)θ(
1− u2

)θ]1
θ

0 2− 2
1
θ

Notes: In-depth explanation is provided in (McNeil et al. 2015) and the references in the theoretical section.
The tail dependence of the Student’s t is obtained as the CDF of a univariate distribution with v+1 degrees

of freedom, with w = −
√
v+1

√
1−ρ√

1+ρ
. ϕ and N are denoted CDF of a univariate standard normal distribution

and CDF of a bivariate normal distribution respectively.

Unconditional and conditional estimations of copula parameters are conducted in section 4.

The choice of the suitable copula technique is supported by a mix of graphical and goodness-of-fit

tests. For illustration purposes, four copula representations are generated in Figure 3. The Frank,

the Clayton and the Gumbel-Hougaard replicate the graphical pattern in table Table 2 in terms

of tail dependence (concentration of observations either near the point (0, 0) or (1, 1), which are

situations of lower and upper tail dependence respectively). Thus, a graphical analysis contains a

paramount role in copula evaluation.
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Figure 3: Graphical representation of four simulated bivariate copula families
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Notes: Each figure is generated with a sample size of 1200. The θ parameter is arbitrarily set to 5 for Frank,
4 for Clayton and 2 for Gumbel-Hougaard.

4.3 Cryptocurrency Market and Investors’ Expectation

Similar to any classical estimation framework, working with copula consists in estimating the

parameter θ of the copulas reported in Table 2 and identifying the best approach to model the joint

distribution. When dealing with time series, one common approach is to estimate the parameters

of C(.) parametrically using the Maximum Likelihood Estimation (MLE). This has the advantage

of handling both the marginal and the copula dependence parameters.

Copula estimates are normally computed in multiple stages. The first step entails formulating a

stochastic process driving returns on the CM and the change in the spread. Then, the standardized

residuals are used to estimate the dependence between the two variables. The conditional copula

specification for returns on the CM and the change in the spread involves a simple mathematical

twist with regard to the case in the previous section known as unconditional copula. Again, using

Hofert et al. (2019) notations, the conditional form of the copula is:

HGt−1(x1, x2) = P (X1t ≤ x1, X2t ≤ x2|Gt−1), (x1, x2) ∈ R2. (4)

In this set up, Gt− 1 is the information set incorporating past indications about returns on the

CM, the change in the spread and their dependence. Again, Sklar’s theorem allows to write the
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joint conditional distribution to be formulated in terms of conditional copula as

HGt−1(x1, x2) = CGt−1(FGt−1,1, (x1), FGt−1,2, (x2)). (5)

In practice, the conditional transformation of equation 4 involves using the standardized residu-

als from an ARMA-GARCH structure to estimate the dependence parameter in the copula notation.

In this work, conditional components (mean and variance) of returns on the CM and the change

in the yield are of the form ARMA(0,0,0)-GARCH(1,1).

Equations 6 and 7 display the conditional mean and the conditional equations for the two

markets. The ACF and the additional analysis in Appendix B provides justifications for the au-

toregressive order followed in the specification below. We also use the stepwise algorithm to confirm

the intuition behind the interpretation of the ACF 6. The two sets of equations take the form

X1t = µ1t + ϵ1t (6)

δ21t = ω + α1ϵ
2
1t−1 + β1δ

2
1t−1

ϵ1t = δ1te1t

e1t
iid∼ tv(0, 1)

X2t = µ1t + ϵ2t (7)

δ22t = ω + α1ϵ
2
2t−1 + β1δ

2
2t−1

ϵ2t = δ2te2t

e2t
iid∼ N(0, 1),

The assumption made on the distribution of the standardized residuals is the main difference

between equations 5 and 6. e1t follows a skewed student’s t process whereas e2t is normal distributed.

Figure 12 in the appendix section compares the fitness of equations 5 and 6 with normal, student’s

t, skewed student’s t and generalized error residuals. The GARCH(1,1) with skewed residuals

stands out as a good candidate to explain price variations on the CM. Similarly, the GARCH(1,1)

with normal residuals is the best option for the spread series.

Parameters of equations 5 and 6 are estimated from the joint density function of H(.) using the

MLE. The likelihood notation takes the form of a joint density product of the marginal densities

6The stepwise regression gives evidence for an ARMA(0,0,0) with no conditional mean in the case of the
spread equation. This situation arises because the conditional mean is relatively low and statistically not
different from 0. We depart from the suggestion of the stepwise algorithm and estimate the conditional mean
(the slope). This deviation does not change the conclusion drawn in this chapter.

14



and the copula density

f(X; Ω, ψ) = f1(X1t; Ω1)f2(X2t; Ω2)c(u1, u2;ψ). (8)

We apply the two-stage approach by first estimating all margin parameters in Ω1 and Ω2.

Degrees of freedom and a shape parameter for X1t residuals are also computed as part of the first

stage, since shocks in this particular model are skewed student’s t distributed. The vector of copula

parameters (ψ) are again computed via the MLE in the second stage. These two steps are visible

from the log likelihood of the joint density, where the sum of the marginal log likelihoods and the

copula log likelihood form the first and the second stage respectively. The log-likelihood expression

is written as

Lf(Ω, ψ;X) = lnf1(X1t; Ω1) + lnf2(X2t; Ω2) + lnc(u1, u2;ψ). (9)

Note the expressions 2 and 9 write the copula function in terms of the uniform margins u1

and u2. This transformation is crucial to the estimation of the copula parameters. The process

requires extracting the standardized residuals of the ARMA-GARCH processes and apply the

integral transform theorem in order to obtain the uniform margins from the empirical distribution

of the residuals. In this paper, we follow the recommendation in Hofert et al. (2019), where the

uniform margins in the copula density are estimated by:

Uit =
1

n+ 1
(Rit), (10)

with Rit, the rank of a residual observation in the dataset. The position or the rank is determined

by the time index t. The Uit sample is known as pseudo-observations in the literature.

Estimates of the marginal series show significant volatility persistence with the sum of α1 and

β1 being close to 1. The persistence is, however, much higher in the case of the CM, which unequiv-

ocally subscribes to the description of volatility clustering. According to the half-life calculation, it

takes 346 days for the volatility to revert to 50% of its long term level following a shock on the CM.

Standardized residuals or shocks on the CM are slightly leptokurtic and positively skewed as shown

by the estimates of the shape parameters. Note that both the conditional mean and variance of

X2t are not statistically different from zero. This would indicate that past information is irrelevant

to understand fluctuation in the spread series. The estimated conditional moments of the spread

series stand in contrast to the CM, although the conditional variance is relatively small in the case

of the cryptocurrency.

Table 4 reports the dependence parameter estimates for a set of copula families widely used in

empirical finance. In exception of the clayton copula, the remainder of the estimates is not statisti-

cally significant at the conventional significance levels. The relatively large degree of freedom (29)

is evidence that a normal copula would be preferred to the student’s t family in the context of this

study. By the same token, the low value of the dependence parameter indicates weak dependence
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between fluctuations on the CM and the term structure. The computed tail probabilities are ap-

proximately zero for the different copula types. So, observed extreme events on the two markets

are likely to be unrelated.

Table 3: ARMA-GARCH estimates of returns on the CM and the treasury yield spread

X1t X2t

ARMA(0,0)-GARCH(1,1) ARMA(0,0)-GARCH(1,1)

µ 0.003∗∗∗ 1×10−6

(0.001) (8×10−5)

ω 5.5×10−4∗∗∗ 1.2×1−7

(1.8×10−4) (2×10−7)

α1 0.159∗∗∗ 0.073∗∗∗

(0.019) (0.016)

β1 0.840∗∗∗ 0.901∗∗∗

(0.020) (0.014)

v 0.998∗∗∗

(0.022)

λ 3.068∗∗∗

(0.147)

Log. Likelihood 4, 934.416 16,937.91
AIC −3.688 -12.670

N. obs. 2673 2673

Notes: In this table, v and λ are estimates of the degrees of freedom and the skewness parameter in a
GARCH model with Hansen’s skew t error. In parenthesis are the standard errors of the estimates.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

We plot the uniform transformed components of the residual series in Figure 4. In accordance

with the copula estimates, no clear dependence pattern is observable between the CM and the

US government bond market. The graph rather illustrates the case of an independence copula.

In theory, a clayton parameter estimate oscillating around zero or a gumbel parameter around 1

is a sign of independence copula. We formally test the null hypothesis that the relation between

the two markets is no different from an independence copula structure 7. Unsurprisingly, we find

no evidence against the null hypothesis (p-value=0.226). To ensure the result of this analysis is

not a mere consequence of the copula specification, we test for the necessity of a time-varying

copula modelling using the Bücher et al. (2014) method. The latter accounts for deviations in the

dependence parameter due to the changing nature of the dependence between the two margins or

abrupt structural breaks in the two series. We find strong evidence against a time-varying copula

7This test evaluates whether the Kendall’s rank correlation is statistically different from zero or not. The
correlation level is 0.015, which is not different from zero according to the test. As a side note, this test
is possible because rank-based correlation parameter can be written as a function of the underlying copula
between the two variables.
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Table 4: Estimates of different copula family parameters

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.022 0.024 0.049∗∗ 0.156 1.001 1.003
(0.019) (0.02) (0.02) (0.114) (0.011) (0.016)

τL 8.252×10−6 7.488×10−7∗∗∗

( 5.281×10−6) (1.52×10−8)

τU 8.252×10−6 2.065×10−8∗∗∗ 2.065×10−8∗∗∗

(5.281×10−6) (2.322×10−10) (3.318×10−10)

Deg. of freedom 29
(19.23)

Log. Likelihood 0.653 1.873 2.947 0.887 -2.749×10−7 -1.091×10−6

AIC -0.695 -4.254 1.895 -0.226 -4 -4

N. obs. 2673 2673 2673 2673 2673 2673

Notes: In the spirit of Table 2, the statistical significance of the Joe and Gumbel-Hungaard is tested as
H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities, in parenthesis, are computed with
the delta method, since the latter is a transformation of θ.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level .

(p-value = 0.373). This first set of results is indeed a robust illustration of the independence nature

of the two markets modelled through the bivariate copula, which is the antipode of the rational

expectation theory. In the sense that the slope of the yield curve for the selected maturities is not

relevant in explaining fluctuations on the CM. We will later go back to the dynamic nature of the

analysis and robustness considerations.

Figure 4: Dependence representation between the spread and the CM
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Notes: This figure presents the residuals extracted from equations 5 and 6. The residuals are transformed
to be distributed between 0 and 1 (Pseudo-observations). To operate the transformation, we use the rescaled
empirical distribution function approach. Hofert et al. (2019) gives a detailed explanation of this technique.
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4.4 Cryptocurrency Market and Volatility Anticipation

We shift our attention to studying the link between expected volatility on mainstream risky markets

and price fluctuations on the CM in this section. The GARCH-based estimate of the crypto price

volatility is used for the CM. As explained in the introduction, the S&P 500 is our proxy for the

overall stock market. As such, we use the VIX to measure expected volatility regarding the global

stock market. The VIX is often seen in the literature as a proxy for investors’ sentiment and

uncertainty about the future state of the equity market (see Bekaert et al. 2013). So, the existence

of a significant correlation between the VIX and the volatility on the CM would help pinpoint

possible fundamentals driving cryptocurrency price movements.

Unlike Bekaert et al. (2013) that breaks the VIX down into an uncertainty and a risk-aversion

component, the estimations below use raw values of the VIX as downloaded from the Federal

reserve Bank of Saint-Louis. Our interest is simply the VIX component in level. In other terms,

we want to appraise how volatility on both markets relates to each other. A primary investigation

shows that high volatility on the CM tends to synchronize with low volatility expectations on the

S&P 500 (See top-left panel of Figure 5). To better capture the latter observation and compute a

tail dependence probability, we reverse the distribution of the VIX by subtracting the index from

100. The synchronization is now translated into an upper tail dependence representation, which is

computed in the last column of Table 5 and visible in the top-right panel of Figure 5.

We present semiparametric copula estimates for the equity market and the CM in Table 5. In

the previous section, we conduct the dependence estimation work using the residuals of the GARCH

processes. We used the residuals to account for the volatility clustering feature of the returns series

in the copula parameter estimation. In this section, we directly generate the pseudo-observations

(with equation 10) using the values of the VIX in level and the GARCH-based volatility estimated

from equation 6. Then, the copula dependence parameters are estimated between X1t and X3t via

the MLE 8. In line with the previous results, the dependence parameter estimates are relatively

low and statistically different from zero for the different copula families. Unlike results presented

in the previous section, the tail dependence probability is non-negligible (4.6% ) for the Gumbel-

Hougaard and the Joe copulae (7.8 % ). So, if a trader were to combine the ERI and the S&P

500 index, she should expect the volatility on each market to go in different directions every 22

days with the Gumbel-Hougaard and every 13 days with the Joe. However, judging from the AIC,

the Gumbel-Hougaard offers a better fit than the Joe Copula and would therefore be a stronger

statistical framework to study the relationship between the variables (with the student’s t copula

being the best model).

8A semiparametric estimate avoids the steps of specifying a GARCH structure for the VIX. In the present
analysis, the semiparametric choice does not alter the conclusion if we were to estimates the dependence
coefficients parametrically (fully). In addition to the simplicity of the semiparametric approach, the GARCH
estimates for a VIX series would be hard to make sense of (in the first estimation stage) as opposed to price
series where the mean and variance equations have meaningful financial implications.
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Table 5: CM and VIX copula estimates

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.062∗∗∗ 0.062∗∗∗ 0.062∗∗ 0.295∗∗∗ 1.031∗∗∗ 1.061∗∗∗

(0.02) (0.02) (0.027) (0.119) (0.013 ) (0.021)

τL 0.000 1.401×10−5∗∗∗

(1.56×10−10) (3.778×10−7)

τU 0.000 0.046∗∗∗ 0.078∗∗∗

(1.56×10−10) (0.009) (0.002)

Deg. of freedom 3847∗∗∗

( 7.171)

Log. Likelihood 5.047 5.045 - 3.287 4.455 6.006
AIC 8.095 2.091 - 4.574 4.910 8.013

N. obs. 2673 2673 2673 2673 2673 2673

Notes: This table presents estimates of some of the widely used copulas. In parentheses are standard errors
of the estimates. In the spirit of Table 2, the statistical significance of the Joe and Gumbel-Hungaard is
tested as H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities are computed with
the delta method. The MLE failed to estimate the dependence parameter in the Clayton case. We instead
estimate the parameter via the method-of-moment (Spearman’s rho). Hofert et al. (2019) gives a detailed
explanation of this technique.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

The margins of the two variables are plotted in Figure 5. As explained above, the first column

gives a representation of the VIX along with the volatility on the CM. The second column, labelled

as transformed series, flips the cluster of observations near the point (0, 1) to the point (1,1). So,

the Gumbel-Hougaard and the Joe upper tail dependence probabilities output the odds of having

this cluster of points.

We also display a representation of the VIX along with a GARCH-based forward volatility

estimate for the CM in the bottom panels of Figure 5. Given the VIX is a forward-looking variable,

investors’ forward volatility expectation for the CM may show a stronger response to change in

the VIX than the instantaneous volatility analysis conducted in the previous paragraphs. The

forward volatility, computed as 1
22

∑22
k=1 σt+k, is a rolling ahead moving average over 22 trading

days (or one calendar month), with k being the one period ahead index. In terms of level, the new

dependence parameter estimate is close to the results of Table 5. 9 However, we find a relatively

important difference in the likelihood of observing joint extreme movements on both markets. For

instance, the tail dependence probabilities are now 8% and 12% for the Gumbel-Hougaard and the

9One of the first steps in this section was to establish the stationarity of the variables being used. We use
a version of the test for point detection to clarify this point (see the section 6.2.1 of Hofert et al. (2019)). We
find no evidence to reject the hypothesis of stationarity for the GARCH-based volatility (p-value=0.271).
The 22-day moving average for the GARCH-based volatility is also stationary (p-value=0.284). We cannot
reject the stationarity hypothesis for the VIX series at 1% significance level (p-value=0.026). For simplicity,
we go ahead and accept stationarity for both variables.
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Joe techniques respectively (see Table 8 in the appendix).

Figure 5: Dependence representation between the VIX and CM volatility
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Notes: This figure presents the VIX and the volatility on the CM. The first row gives the VIX and the
predicted volatility at time t. The second row is gives the VIX and the forward predicted volatility over 22
trading days. The values are transformed to be distributed over the interval 0 and 1. The original series
plot the pseudo-observations with no transformation. However, the plots with the transformed series come
from subtracting 100 from the VIX.

The relatively weak dependence of this section showcases the fact that the CM and the global

stock market may value expected uncertainty in different ways, which leads to different price

reactions on both markets. Relying on the leverage effect, meaning the existence of a negative

correlation between volatility and returns, one possible explanation for the results would be the

change expected low volatility brought about future expected returns. This would mean expected

low volatility on the S&P 500 renders the market more attractive (inflow of capital) and bids

returns up. In such a context, risk-averse investors would prefer the S&P 500 to the riskier CM,

which would drive transaction activities down and increase fluctuations on the CM. This outcome
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would be a perfect illustration of the risk shifting mechanism and its resulting impact on returns

distribution on the CM. However, data on transactions activity for BTC and ETH do not support

this line of reasoning. For instance, Figure 6 does not show any clear pattern for transactions

volume (activity index) within the BTC and ETH network to lower when the VIX weakens. The

same lack of co-movement is also observed between the CM price index and the VIX.

Figure 6: Transactions in the cryptocurrency network, VIX and ERI

2012 2014 2016 2018 2020 2022

0
20

40
60

80

Date

Transaction (in 10000)
VIX (in %)
ERI (in 1000

Notes: This figure presents the evolution of the VIX with respect to transactions in the cryptocurrency
network (activity index) and the price index. Transactions activity is an index computed with the same
methodology as ERI. Note that both the ERI and the transactions activity index are used in level.

4.5 Cryptocurrencies and inflation expectation

The conclusion reported in subsection 4.3 would be similar if interest rates on Treasury Inflation-

Protected Securities (TIPS) were to be used rather than nominal ones. In fact, it is theoretically

sound to assume investors care about real earnings and this fact should reflect in the correlation

between the returns on the CM with interest rates on TIPS depending on the state of the inflation

expectation (high or low). However, previous studies found no significant evidence for investors

to hold more inflation-protected financial instruments when inflation expectations are high (Shiller

2015, Fleckenstein et al. 2014). We observe similar patterns in the dependence structure between

crypto-currency price movements and the 5-year US breakeven inflation.

In the conditional copula framework, we model the breakeven inflation (first difference) as an

ARMA(0,0)-GARCH(1,1) with GED residuals. Model checking and justifications for this GARCH

order can be found in Figure 16. The copula estimates are reported in Table 6 and the scatter

plot of the marginal distribution in Figure 17 of the appendix. Estimates of the copula and the
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tail dependence parameters are low and statistically not significant. The graph of the uniform-

transformed margins shows no sign of tail dependence or relationship between the two variables.

The Bücher et al. (2014) test for time-varying copula also provides no evidence against a constant

conditional copula model (p-value=0.282). So, the results obtained in this section are not due

to abrupt changes in the margins of either the log-returns of crypto-currencies or the breakeven

inflation.

Table 6: CM and inflation expectation copula estimates

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.032 0.029 0.059 0.128 1.007 1.001
( 0.019) (0.02) (0.021) ( 0.117) (0.011) ( 0.013)

τL 1.39×10−5 8.37×10−6

( 0.017) (1.743×10−7)

τU 1.39×10−5 0.009 2.066×10−8

( 0.017) (9.847×10−5) (2.709×10−10)

Deg. of freedom 28∗

( 16.62)

Log. Likelihood 1.349 2.879 4.674 - 0.194 -1.55×10−8

AIC 0.699 -0.242 5.348 -3.612 -4

N. obs. 2673 2673 2673 2673 2673 2673

Notes: This table presents estimates of some of the widely used copulas. In parentheses are standard errors
of the estimates. In the spirit of Table 2, the statistical significance of the Joe and Gumbel-Hungaard is
tested as H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities are computed with
the delta method. The MLE failed to estimate the dependence parameter in the Frank case. We instead
estimate the parameter via the method-of-moment. Hofert et al. (2019) gives a detailed explanation on the
use of this technique.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

4.6 Further Interpretation and Robustness Checks

Contrary to insights popularized in business and financial magazines, the results of this research fall

short of establishing a significant correlation between the cryptocurrency market and the spread

on the US government bonds 10. We also find mild evidence linking the volatility on the CM with

the expected volatility on the S&P 500 index, which is in a stark contrast with a similar study

conducted by Akyildirim et al. (2020). The same weak evidence is also reported in the context

of the breakeven inflation. This lack of connection would suggest that investors on the CM give

little weigh to the slope of the yield curve, the VIX indicator and the expected inflation in their

investment decisions. However, the first two variables are traditionally seen as strong predictors of

10This analysis by The Economist (2022) is one of these news articles explaining the April 2022 price drop
by the rising interest rate on US government debt instruments.
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change in financial conditions and business cycles (see e.g., Estrella & Mishkin 1996). Therefore,

movements in the slope of the yield curve and the VIX contain valuable economic information for

portfolio construction and investment decisions related to the mainstream markets. So, it is crucial

to pinpoint elements that can explain the results found in the context of the CM analysis.

Sticky updating about future uncertainty may play a role in the weak dependence between the

CM and the stock market (see e.g., Lochstoer & Muir 2022). This would be a result of investors

taking time to incorporate new information regarding future uncertainty from the S&P 500 into

their cryptocurrency investment decisions. In this setting, models that can account for the lag in

the response of the CM to the volatility forecast of the S&P500 would be more insightful than the

copula framework. Moreover, investors may value idiosyncratic risks more than a broad indicator

like the VIX. This would, for instance, express in CM participants having a stronger reaction to

change in cryptocurrency regulations than broader uncertainty information hidden in the VIX, such

as changes in the monetary policy stance or gloomy economic forecasts.

Significant inter-temporal variation of the interconnectedness between the CM and the other

markets may also explain the weak variation reported in section 4. In a recent paper, Iyer (2022) re-

ports a deeper connexion between crypto-currencies and the US stock market following the COVID-

19 shock. The author finds a pearson correlation of 0.01 and 0.36 for the sub-periods 2017-2019

and 2020-2021 respectively. This implies that long time series can hide or offset recent correla-

tional developments between the CM and other markets. In our analysis, we indirectly control

for this issue by using the test for point detection. The point detection (stationarity) test has the

advantage of identifying structural breaks that affect the margins and the copula parameter. As

reported in section 4, we found no clear evidence of non-stationarity for the four core variables. So,

it is unlikely that the weak dependence estimates computed for the log-returns on the CM and the

other variables are sample-dependent.

We extend the analysis to account for statistical issues that may affect the strength of the

interconnectedness of the CM with other markets. For brevity, we keep the robustness check

between the returns on the CM and the bond market variables, meaning the interest rate spread

and the breakeven inflation. Possible conundrums with cryptocurrency data entail non-synchronous

closing times with other markets analysed by Alexander & Dakos (2020) and noise that might have

contaminated the cryptocurrency price series during the early trading days. We deal with the latter

problem by sketching the pseudo-observations graph for a sample ranging from 1 January 2020 to 31

March 2022. The starting point of the sub-sample is similar with the one considered in Iyer (2022).

Furthermore, we use weekly returns to minimize possible problems with non-synchronous closing

times. Weekly aggregation allows us to capture a more substantial bulk of the price variation in

presence of non-synchronous distortions.

Figure 7 shows no deviations from our previous conclusions, both for the daily and weekly

observations. Summing up, recent periods characterized by a growing public oversight over crypto

trading activities does not rule out the weak relationship found in the whole sample between con-
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temporaneous values of cryptocurrency returns and the slope of the yield curve. It is important to

note that the period in question also corresponds to the advent of smart money into the cryptocur-

rency investment sphere 11. It would be natural to expect economic indicators such as the slope of

the yield curve to be correlated with cryptocurrency prices over this period. This deduction stems

form the fact that institutional investments ought to follow some technical rules and be aligned

with market conditions. Otherwise, rationalizing cryptocurrency investments decisions would be

a difficult task. So, there is an imperative obligation to shed light on why cryptocurrency prices

seem to be detached from market indicators derived from the state of the world’s economy.

Figure 7: Dependence representation between log-returns on the CM, interest rate spread and
5-year breakeven inflation
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Notes: This figure presents the pseudo-observations of the log-returns on the CM, the interest rate spread
and the breakeven inflation. The sample covers the period 1 January 2020 to 31 March 2022. The pseudo-
observations are generated from the standardized residuals of a GARCH(1,1) with student’s t innovations.
For brevity, we only present the plots, which depict a situation of near independence copula between the
variables.

Using our crypto index, we indeed find evidence of a rising positive correlation around 2020.

11See Fidelity (2021) for an overview on institutional investors on the CM.
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We use the same correlation measure as in Iyer (2022) for comparison purposes. The results of

this exercise need to be carefully contextualized for a better understanding of the CM. In level

(the first row of Figure 8), the pearson correlation measure is high and characterized by sudden

movements between positive and negative values. However, this observation is a consequence

of the non-stationarity of the variables. When working with returns, the correlation estimate

reduced significantly (bottom panel). Put differently, there is a spurious relationship problem at

play between the covariates and the crypto index in level 12. In terms of the magnitude and the

statistical significance of the estimate, there is no major contrast between the two sub-periods.

The correlation seems to fluctuate around 0.2 and -0.2 with no pattern. So, there is not a specific

pattern for the CM to be more connected with macroeconomic fundamentals following the 2020

sub-period.

Our final robustness check involves estimating a simple ADL(2,2) model to account for the

inability of the copula framework in this research to account for dynamic relationship between the

variables. The low ADL order specification is chosen for simplicity reasons. Using higher lags will

also keep the conclusion laid out below intact. Our crucial goal in this exercise is to test how returns

on the CM respond to lags of the interest rate spread and the breakeven inflation. Going forward,

these insights will be important priors for more advanced modelling work on cryptocurrency returns.

The ADL specification for the returns on the CM and the yield spread is of the form:

X1t = α+ϕ1X1t−1+ϕ2X1t−2+β0X2t+β1X2t−1+β2X2t−2+λ0X4t+λ1X4t−1+λ2X4t−2+ϵt. (11)

All the variables in the ADL specification are stationary and read as log-returns on the CM,

the first difference of the interest rate spread and the first difference of the 5-year US breakeven

inflation. We provide the coefficient estimates for the model in Table 9 of the appendix. Both full

sample and sub-sample estimates are reported in the table.

The sign of the estimates and their statistical significance carry a number of pivotal lessons to

help rationalize the connection between returns on the CM and the wider economic environment.

The breakeven inflation affects returns on the CM with one lag when considering a full sample

estimation. If today expected inflation increases by 1 percentage point, log-returns on the CM is

predicted to increase by 5.6 percentage points. The effect is statistically significant at only 10%

level. The coefficients in the first sub-sample period (2012-2019) show no statistical significance at

any of the conventional levels. In comparison, we find a strong and significant short-run effect in the

second sub-sample (2020-2022). A 1 percentage point increase in the 5-year US breakeven inflation

leads to an immediate response of the log-returns on the CM of about 12 percentage points.

12We formally test the spurious relationship hypothesis by regressing the crypto index on each of the
covariates. The obtained residuals are integrated of order 1. We also reject the Ljung-box null hypothesis
of no autocorrelation at 1%.
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Figure 8: 60-day rolling correlation between the crypto index, the interest rate spread and the
breakeven inflation.
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Notes: This figure presents the rolling correlation for the variables. The first row is the variables in level,
and the second one reports their variation. The dashed violet lines are the 95% confidence band.

The interest rate spread, or the information contained in it, is not a predictor of price variations

on the CM. This result is confirmed by the simple dynamic modelling exercise. The estimates of the

spread coefficients are not statistically different from zero in any of the scenari reported in Table 9.

The results imply that real returns are important for CM participants. Investors would require

higher nominal returns when inflation is expected to go up. More importantly, the coefficients of

the ADL model depict a strong contemporaneous effect of the breakeven inflation on returns on

the CM in recent times. Overall, including lags is important to uncover dynamic effects of the

covariates on the log-returns.

From a practical standpoint, this study helps clear up some misconceptions about potential fac-

tors driving cryptocurrency prices. However, the cryptocurrency network remains a fast involving

environment with various aspects to understand. The relative absence of entry restrictions makes

cryptocurrencies accessible to investors around the world. As such, the CM would probably be one
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the most diverse investors pool in existence. As a potential downside, this diversity might entail

a degree of asymmetry in the financial literacy and the risk attitude of CM market participants.

The two factors are likely to affect price variations on the CM. A strand of the behavioral financial

literature has for long studied how these distortions feed in trading behaviors (biases) observed

from market participants 13. This facet of the analysis is not covered in this research and would be

an important line of investigation for the CM.

5 Conclusion

Our analysis finds no strong dependence between the CM and the US interest rate spread (the

breakeven inflation as well) in the copula modelling famework. This result dismisses the importance

of the yield curve in investment decision making related to the CM. Such an outcome corresponds to

numerically low copula parameters and tail dependence estimates. Our interpretation is supported

for the entire sample and a sub-sample analysis. The latter sample covers the post-2020 period,

which has seen an expansion of the crypto activities to institutional investors. Our results display

the same negligible correlation between the two markets for the sub-sample consideration. In a

nutshell, information about future changes in monetary policy and economic cycles contained in

the slope of the yield curve does not matter for returns on the CM.

We extend the same methodology to the analysis of the dependence between the volatility on

the CM and the VIX. The VIX is known in the literature to be a measure of investors’ fear and

uncertainty about future market conditions. Our results provide weak evidence that low VIX esti-

mates tend to correspond with high volatility on the CM. This tail dependence relationship becomes

stronger when looking at the VIX with a forward-looking volatility estimate for the CM. We inter-

pret this ”low-high” volatility result as a shift in resources allocation between the two markets. In

times of low volatility, investors, namely the risk-averse ones, would substitute cryptocurrencies for

stocks. In the end, the outflow of money would nourish uncertainty and cause the volatility on the

CM to spike up. However, the transactions volume in the cryptocurrencies network, approximated

by the activity index, does not fully reflect the outpouring interpretation of capital provided for

this section (see Figure 6).

However, the conclusion of our analysis changes when we account for the dynamic interactions

of the interest rate spread and the breakeven inflation on the log-returns on the CM. Market

participants require higher nominal returns on cryptocurrencies when prices are on an increasing

trajectory. So, real returns appear to be critical for investors on the CM.

Summing up, our contribution stands in contrast with the strand of the literature that acknowl-

edges a direct significant link between the CM, the monetary policy stance and the government

bond market (see e.g., Karau 2021). As such, the result rules out possible risk shifting links that

13See Liu et al. (2022) for a brief summary of this strand of the behavioral finance literature.
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can explain the emergence of the CM after the 2008 financial crisis. This null result is visible

through the weak and non statistically significant result linking the interest rate spread and the

log-returns on the CM. On another level, it can be inferred that models that can account for the

dynamic between lags of the variables (VAR for instance) would be a robust starting point to

address the limitations of the copula modelling. We suggest two methodological points that need

to be considered in this regard. First, looking at other ends of the yield curve would be crucial to

have a complete picture of the relationship between the CM and the bond market. It is possible

that bonds of other maturities might lead to a different conclusion (See e.g., Campbell & Shiller

(1991) and the references therein). Second, granular data is an important step to study the pro-

file of CM participants. Shiller (2015) gives an extensive elaboration on ”new era thinking” and

their connection with unreasonable price valuations. The ”new era thinking” refers to the inflated

economic optimism that is often fuelled by news outlets. This element of optimism can lead to

rising asset prices and, in some cases, to bubble formation. Available granular datasets would be

paramount for the investigation of this idea of ”new era thinking” in the context of CM possible.
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Appendices

A Supplementary information to the summary statis-

tics

Figure 9: ACF of the interest rate spread, the VIX and the breakeven inflation
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Notes: This figure presents the ACF and the PACF of the spread series in level. It is clear from the ACF
that the series stems from a non-stationary process. Note that the horizontal dashed lines (in red) represent
the 95% confidence interval.

B Supplementary information to the modelling section

In choosing the model choice, we start with plots of the correlation between different lags of both

series. Figure 10 reveals weak evidence of correlation between successive lag values of X1t and X2t.

On the contrary, the squared of both series exhibit significant correlation between contemporaneous

and past values. We apply the Ljung-Box test to confirm the existence of serial dependence in the

series. There is evidence against serial dependence for X1t and X2t at low lag components (up to

3 for X1t and 6 for X2t). However, the squared transformation of both variables show existence of
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strong serial dependence up to 12 lags.

We use stepwise regression to select the number of lags to enter the conditional equations 5 and

6. We construct the variance equation with the squared component of each series. The Bayesian

Information Criterion (BIC) selects ARMA(0,0,0)-GARCH(2,1) and ARMA(0,0,0)-ARCH(3) for

returns on the CM and change in the spread, respectively.

We use the MLE to compute parameters of the model order suggested by the stepwise regression

framework. Estimates are reported in Table 7. In passing, we provide estimates of alternative

models for comparison purposes. In the case of X1t, we run a GARCH(1,1) and a TARCH(1,1,1). A

GARCH(1,1) sits between the suggested GARCH(2,1) and the TARCH(1,1,1). The GARCH(1,1)

represents a simpler framework (less parameters to be estimated), whereas the TARCH (1,1,1)

stands as a more complex formulation. The same explanation goes for X2t. Results reported in

Table 7 show that the models are equally good according to the AIC. With the BIC, a GARCH(1,1)

seems to be a more suitable framework to model the conditional variance of X1t as well as X2t.

To further the model choice analysis, we test for leverage effect. We appraise the asymmetric

effect by computing the simple correlation between X1t and its squared component (we follow the

same approach for X2t). The correlation is -0.098 and 0.195 for X1t and X2t, respectively. This

would suggest a negligible leverage effect on the CM. Unlike the MLE, the TARCH parameter for

X1t is not statistically different from zero (at the 10% significance level) when we use the Quasi-

Maximum Likelihood Estimation (QMLE) technique. The latter would be a more robust approach

to obtain standard errors for estimates of the models in case the normal assumption does not hold

for the distribution of residuals. So, analysing the distributional process of the residual series would

be an important step to complete the comparison task and decide on the necessity of a TARCH

process to model X1t.

We keep the GARCH(1,1) as the best candidate to model the conditional variance on the CM.

On the contrary, the TARCH(1,1,1) would be a good approach for the spread. In fact, a correlation

of roughly 0.2 can be relatively informative to appraise asymmetric reactions for the spread series.

However, residuals of the TARCH process for X2t are serially correlated. The observation holds for

other distributional assumptions on the residuals (see Figure 14). In conclusion, a GARCH(1,1) is

considered for both series. We explain the choice of the distributional assumption in Figure 12 and

Figure 13. Considerations on the fitness of the models are displayed in Figure 15.
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Figure 10: Autocorrelation function of log-returns and change in the spread
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Notes: This figure presents the ACF of log-returns on the CM (X1t) and the change in the spread (X2t) .
The horizontal dashed lines (in red) represent the 95% confidence interval of a white noise series.
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Figure 11: Partial autocorrelation of log-returns and change in the yield
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Notes: This figure presents the PACF of log-returns on the CM (X1t) and the change in the spread (X2t) .
The horizontal dashed lines (in red) represent the 95% confidence interval of a white noise series.
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Table 7: Model comparison for returns on the CM and change in spread

X1t X2t

GARCH(2,1) GARCH(1,1) TARCH(1,1,1) ARCH(3) GARCH(1,1) TARCH(1,1,1)

ω 0.0001∗∗∗ 0.0001∗∗∗ 0.002∗∗∗ 0.000∗∗∗ 0.000 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

α1 0.120∗∗∗ 0.139∗∗∗ 0.155∗∗∗ 0.142∗∗∗ 0.073∗∗∗ 0.065∗∗∗

(0.022) (0.014) (0.022) (0.023) (0.016) (0.011)

α2 0.027 0.048∗∗∗

(0.027) (0.017)

α3 0.081∗∗∗

(0.019)

β1 0.829∗∗∗ 0.839∗∗∗ 0.847∗∗∗ 0.901∗∗∗ 0.904∗∗∗

(0.019) (0.015) (0.013) (0.014) (0.021)

β2

γ1 −0.093∗∗ −0.180∗

(0.041) (0.101)

AIC −3.452 −3.452 −3.452 −12.660 −12.670 −12.670

BIC −3.441 −3.443 −3.441 −12.649 −12.662 −12.659

Notes: This table presents different model candidates for the conditional variance of X1t and X2t. All
models assume normal innovations. The standard errors with the QMLE is 0.087 and 0.107 for the TARCH
parameter in the X1t and X2t cases respectively.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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Figure 12: Comparison of different distribution assumption for X1t innovations
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Notes: This figure plots the residuals of the ARMA(0,0,0)-GARCH(1,1) process against the normal, the
student’s t, the skewed student’s t, and the Generalized Error Distribution (GED).The normal assumption
offers the worst fit out of all the assumptions considered. The remainder of the models seems to be adequate
to account for the residuals variation. However, the shape parameter estimate is less than one (0.852) with
the GED, which rules out this assumption as a suitable option.
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Figure 13: Comparison of different distribution assumption for X2t innovations
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Notes: This figure plots the residuals of the ARMA(0,0,0)-GARCH(1,1) process against the normal, the
student’s t, the skewed student’s t, and the GED. Normal and GED look appropriate to explain the dynamics
of the residuals, with some trivial difference between the two distributions. The likelihood ratio test gives
evidence that a GARCH(1,1) with normal residuals is optimal for the problem at hand.
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Figure 14: Squared residuals from the TARCH(1,1,1) of the X2t series
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Notes: This figure plots the ACF of squared residuals for the change in the spread series. It can be inferred
from the graphs that there is significant autocorrelation at lag 1. The Ljung-box test supports the evidence
of serial correlation at 1% significance level.
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Figure 15: Squared residuals of X1t and X2t with GED innovations
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Notes: This figure plots the ACF and PACF of squared residuals for both variables. The processes exhibit
a white noise behavior. We then formally test for serial dependence with the Ljung-Box (up to lag 12). We
found no evidence of serial dependence for X1t (p-value=0.753) and X2t (p-value=0.395). So, the GARCH
processes we choose are adequate to model the conditional variance of X1t and X2t.
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Table 8: CM and VIX copula estimates

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.105∗∗∗ 0.105∗∗∗ 0.109∗∗∗ 0.488∗∗ 1.062∗∗∗ 1.099∗∗∗

(0.020) (0.020) (0.029) (0.188) (0.015) (0.023)

τL 0.000 0.002∗∗∗

(1×10−8) (5.016×10−5)

τU 0.000 0.08∗∗∗ 0.121∗∗∗

(1×10−8) ( 0.001) (0.003)

Deg. of freedom 9462

Log. Likelihood 14.48 14.48 - 8.71 14.23 16.29

AIC 26.968 20.961 - 15.434 24.466 28.589

Notes: This table presents estimates of some of the widely used copulas. In parentheses are standard errors
of the estimates. In the spirit of Table 2, the statistical significance of the Joe and Gumbel-Hungaard is
tested as H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities are computed with
the delta method. The MLE failed to estimate the dependence parameter in the Clayton case. We instead
estimate the parameter via the method-of-moment (Spearman’s rho). Hofert et al. (2019) gives a detailed
explanation of this technique.
***Significant at the 1 percent level.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

41



Figure 16: Residuals of the breakeven GARCH(1,1) model
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Notes: This set of plots presents the 4 assumptions considered to model the volatility of the breakeven
inflation. The GED shows a better fit with respect to the other distributions. The intercept of the conditional
variance equation is approximately zero (same for the mean equation). The conditional variance equation
can be written as δ24t = 0.058ϵ24t−1 + 0.901δ24t−1. The GED shape parameter is estimated to be 0.9.

Figure 17: Pseudo-observation of log-returns on the CM and the first difference of the inflation
expectation
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Notes: This figure presents the pseudo-observations of the residuals (uniform transformation) from the
GARCH equations for the log-returns on the CM and the 5-year breakeven inflation (the differenced series).
The spread of the points shows no particular dependence structure.
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Table 9: Full sample and Sub-sample estimates of the ADL model

X1t X1t X1t

Full sample (2012-2022) Sub-sample (2012-2019) Sub-sample (2020-2022)

α 0.0034∗∗∗ 0.004∗∗∗ 0.003

(0.001) (0.001) (0.002)

ϕ1 −0.010 −0.008 −0.023

(0.019) (0.021) (0.042)

ϕ2 −0.015 −0.028 0.049

(0.019) (0.022) (0.042)

β0 0.921 1.024 2.941

(2.402) (2.977) (3.839)

β1 −1.03 −0.503 −1.642

(2.403) (2.978) (3.848)

β2 −1.513 −2.029 0.836

(2.405) (2.975) (3.813)

λ0 2.758 −2.903 11.758∗∗∗

(2.927) (3.869) (4.106)

λ1 5.570∗ 4.2 5.6

(2.927) (3.876) (4.238)

λ2 2.414 2.114 1.2

(2.927) (3.868) (4.148)

N. of obs. 2673 2086 587

Notes: This table presents a simple ADL model to capture the dynamic between returns on the CM, the
interest rate spread and the breakeven inflation. 1 January 2020 is the cut-off point for the subsamples as
in Iyer (2022). We find no evidence to reject the hypothesis that the residuals of the above equations are
white noise up to lag 3. The p-values from the ljung-box test are 0.623, 0.556 and 0.993 for the full sample,
the first sub-sample (2012-2019) and the second subsample (2020-2022) respectively.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level
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